Dr. Cowell received a M.S. in Biomathematics with a minor in Mathematics in 1995 from North Carolina State University. In 2000, she received a Ph.D. in Biomathematics with a minor in Immunology, also from North Carolina State University. She spent three years as a postdoctoral fellow in the Department of Immunology at Duke University Medical Center and then became an Assistant Professor in the Department of Biostatistics and Bioinformatics. She was also on the graduate faculty at Duke for the Computational Biology and Bioinformatics Graduate Program. In September 2010, she joined the Biomedical Informatics Division in the Department of Population and Data Sciences at UT Southwestern and has a secondary appointment in the Department of Immunology. Dr. Cowell is broadly interested in understanding the mechanisms of adaptive immunity and their role in infectious diseases, autoimmune diseases, cancer immunology, and vaccine responses. Her methodologic focus has centered on the development of probabilistic models and the use of formal logics for representing and computing with descriptive information. Dr. Cowell is also involved in the educational mission at UT Southwestern. She is a member of the Graduate Programs in Immunology, Cancer Biology, and Computational and Systems Biology. She directs the Introduction to Statistics course for first year graduate students and is involved in training and mentoring graduate students and postdoctoral fellows.
Adaptive Immunity
Research in the Cowell group is directed toward advancing understanding of (1) the molecular mechanisms by which adaptive immune receptor genes are somatically generated and diversified, (2) the role of these mechanisms in disease, and (3) the dynamics of adaptive immune receptor repertoires in the context of various states of human health and disease. In addition to our basic science research, we have pursued clinical applications in the areas of autoimmune disease (e.g., multiple sclerosis), infectious disease (e.g.,Staphylococcus aureus, HIV), and cancer immunology (e.g., HPV-related cancers, particularly cervical cancer, ovarian cancer, design of chimeric antigen receptors for cancer therapy).
Computable Representations of Descriptive Biological and Clinical Information
Dr. Cowell’s research in this area has focused on using formal logics to represent and compute with biological and clinical information in the immunology and infectious diseases domains. She is interested in using logical representations to enhance the analysis of high-throughput biological data and its integration with electronic health record data.