The Antibody Society

the official website of the antibody society

An international non-profit supporting antibody-related research and development.

  • LOG IN
  • BECOME A MEMBER
  • About
    • Mission & Activities
    • Directors and Officers
    • Marketing & Promotions
    • The Antibody Society’s Committees
      • Meetings Committee
      • AIRR Community Working Groups & Sub-Committees
    • Sponsors & Partners
  • Society meetings
    • Computational Antibody Discovery: State of the Art
      • Computational Antibody Discovery Symposium Participants
    • Harnessing Cytokines for Cancer Immunotherapy Symposium
    • Biopharmaceutical Informatics Symposium
    • Emerging Cancer Therapies Leveraging Gamma-Delta Effector T cells Symposium
    • Emerging Immunotherapeutics for Ovarian Cancer Symposium
    • AIRR Community Meetings
    • Antibody Engineering & Therapeutics (US) 2024
      • 2022 Antibody Engineering & Therapeutics
      • 2020 Antibody Engineering & Therapeutics
      • 2019 Antibody Engineering & Therapeutics
      • 2018 Antibody Engineering & Therapeutics
      • What is INN a Name?
        • INN issue updates
    • Antibody Engineering & Therapeutics Europe 10 – 12 June, 2025 | Congress Center, Basel Switzerland.
      • Scientific Advisors, Antibody Engineering & Therapeutics Europe
    • FOCIS Symposia
  • AIRR Community
    • AIRR Community News
    • AIRR Community Newsletter
    • AIRR Community Seminar Series
    • AIRR Community Meetings
      • Zooming into the Community III
      • AIRR Community Meeting VII – Learnings and Perspectives
      • AIRR Community Special Event 2023  – Zooming in to the Community II
      • AIRR Community Meeting VI: “Exploring New Frontiers”
      • AIRR Community Meeting V: “Zooming in to the AIRR Community”
      • AIRR Community Meeting V Pre-Meetings
        • AIRR-seq in the Pandemic
        • AIRR-seq Biological Standards and Workflows
      • AIRR Community Special Event: “Response to COVID-19”
      • AIRR Community Meeting IV: “Bridging the Gaps”
      • AIRR Community Meeting III
        • Day 1
        • Day 2
        • Day 3
        • Day 4
      • AIRR Community Meeting II
      • AIRR Community Meeting I
    • On AIRR – An AIRR Community Podcast
    • AIRR Data Commons
    • AIRR-C Germline Database Resources
    • AIRR Community Publications
    • AIRR Community Working Groups
      • Biological Resources Working Group
      • Common Repository Working Group
      • Diagnostics Working Group
      • Germline Database Working Group
      • Legal and Ethics Working Group
      • Software Working Group
      • Standards Working Group
    • AIRR Community Sub-Committees
      • Communications Sub-Committee
      • Executive Sub-Committee
      • Inferred Allele Review Committee
      • Meetings Sub-Committee
      • Strategic Planning Sub-Committee
    • AIRR Community Webinar Series
    • AIRR Community Calendar
    • AIRR Community Resources
  • Members only
    • Login
    • Note to members
    • Member discount codes
    • 2025 Calendar of Events
    • James S. Huston Antibody Science Talent Award
      • 2024 James S. Huston Antibody Science Talent Award Recipient
      • 2023 James S. Huston Antibody Science Talent Award Recipient
      • 2022 James S. Huston Antibody Science Talent Award Recipient
      • 2021 James S. Huston Antibody Science Talent Award Recipient
      • 2020 James S. Huston Antibody Science Talent Award Recipient
      • Huston Award submission guidelines
    • Research Competitions
      • The Antibody Society’s Research Competition Winners
    • Science Writing Competition
      • Science Writing Competition Winners
    • Imaging Competition
      • Imaging Calendar Competition winners
        • The Antibody Society 2025 Calendar
        • The Antibody Society 2024 Calendar
    • Antibodies in early-stage studies
    • Presentations
  • Upcoming meetings in 2025
  • Web Resources
    • Society Publications
    • Antibody News
    • Antibody News Podcast
    • Antibody therapeutics approved or in regulatory review in the EU or US
      • Antibody therapeutics product data
    • Antibodies in late-stage clinical studies
    • Research Resources
    • Education Resources
  • Career Center
    • Career Shorts
  • Learning Center
    • Upcoming Webinars in 2025
    • The Antibody Series Lectures
    • Antibody Discovery & Development
    • Adaptive Immune Receptor Repertoires
    • Antibodies to Watch
    • Commercializing Antibody Therapeutics
    • Antibody Validation
      • 4th International Antibody Validation Meeting, Sep 2023
    • Snakebite antivenoms: Global challenges and progress toward recombinant antibody therapeutics
You are here: Home / Archives for antibody engineering

Student/Post-doc Poster Competition Winners Announced!

October 24, 2019 by Janice Reichert

Congratulations to our winners!

To recognize the research activities of promising student and postdoctoral attendees of Antibody Engineering & Therapeutics, The Antibody Society sponsors a competition for our student/postdoc members who submit posters for display at the meeting. Our judges select the best work based on originality, relevance and perceived impact on the field of antibody R&D.

This year, our judges selected one student and one postdoc winners who receive: 1) a complimentary registration to attend the conference and pre-conference sessions; 2) an opportunity to give a short oral presentation of their work in one of the conference sessions; and 3) support for travel expenses.

The winners of the contest are:

Timothy Czajka, University of New York at Albany (graduate student winner)
Poster title: RIP-Off: An Intrabody-based Strategy to Neutralize Ricin and other Ribosome-Inactivating Protein (RIP) Toxins

Kamal Joshi, Genentech (Postdoctoral research fellow winner)
Poster title: Toward Deeper Understanding of Bispecific Antibodies

Antibody Engineering & Therapeutics, the annual meeting of The Antibody Society, managed by KNect365, will be held December 10-13, 2019 in San Diego, CA.

Society members receive a 15% discount on the registration fee. Contact us at membership@antibodysociety.org for the code.

Like this post but not a member? Please join!

Filed Under: Meetings, The Antibody Society, Travel award, Uncategorized Tagged With: antibody engineering

Most read from mAbs, October 2019

September 17, 2019 by Janice Reichert

The Antibody Society is pleased to be affiliated with mAbs, a multi-disciplinary journal dedicated to advancing the art and science of antibody research and development. We hope you enjoy these summaries based on the abstracts of the most read papers published in a recent issue.

All the articles are open access; PDFs can be freely downloaded by following the links below.

 

 

Issue 11.7 (Oct 2019)

Glycoform-resolved FcɣRIIIa affinity chromatography–mass spectrometry

Lippold et al. describe a method to determination the impact of individual antibody glycoforms on FcɣRIIIa affinity, and consequently antibody-dependent cell-mediated cytotoxicity (ADCC) without performing high purity glycoengineering. They hyphenated FcɣRIIIa affinity chromatography to mass spectrometry, which allowed direct affinity comparison of glycoforms of intact monoclonal antibodies. The approach enabled reproduction and refinement of known glycosylation effects, and insights on afucosylation pairing as well as on low-abundant, unstudied glycoforms. Their method greatly improves the understanding of individual glycoform structure–function relationships, and it is highly relevant for assessing Fc-glycosylation critical quality attributes related to ADCC.

Looking for therapeutic antibodies in next-generation sequencing repositories

It is now possible to query the great diversity of natural antibody repertoires using next-generation sequencing (NGS) using methods capable of producing millions of sequences in a single experiment. In this new article, Krawczyk et al. compare clinical-stage therapeutic antibodies to the ~1b sequences from 60 independent sequencing studies in the Observed Antibody Space database, which includes antibody sequences from NGS analysis of immunoglobulin gene repertoires. Of 242 post-Phase 1 antibodies, they found 16 with sequence identity matches of 95% or better for both heavy and light chains. There were also 54 perfect matches to therapeutic CDR-H3 regions in the NGS outputs, suggesting a nontrivial amount of convergence between naturally observed sequences and those developed artificially. The authors discuss the potential implications for both the legal protection of commercial antibodies and the discovery of antibody therapeutics.

Elucidating heavy/light chain pairing preferences to facilitate the assembly of bispecific IgG in single cells

Joshi et al. report that a high yield (>65%) of bispecific IgG1 (BsIgG1) without Fab engineering can be a surprisingly common occurrence, i.e., observed for 33 of the 99 different antibody pairs evaluated. Installing charge mutations at both CH1/CL interfaces was sufficient for near quantitative yield (>90%) of BsIgG1 for most (9 of 11) antibody pairs tested with this inherent cognate chain pairing preference. Mechanistically, they demonstrate that a strong cognate pairing preference in one Fab arm can be sufficient for high BsIgG1 yield. These observed chain pairing preferences are apparently driven by variable domain sequences and can result from a few specific residues in the complementarity-determining region (CDR) L3 and H3. Transfer of these CDR residues into other antibodies increased BsIgG1 yield in most cases. Mutational analysis revealed that the disulfide bond between heavy and light chains did not affect the yield of BsIgG1. This study provides some mechanistic understanding of factors contributing to antibody heavy/light chain pairing preference and subsequently contributes to the efficient production of BsIgG in single host cells.

Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life

The neonatal Fc receptor (FcRn) promotes antibody recycling through rescue from normal lysosomal degradation. The binding interaction is pH-dependent with high affinity at low pH, but not under physiological pH conditions. In this new article, Mackness et al. describe how they combined rational design and saturation mutagenesis to generate novel antibody variants with prolonged half-life and acceptable development profiles. First, a panel of saturation point mutations was created at 11 key FcRn-interacting sites on the Fc region of an antibody. Multiple variants with slower FcRn dissociation kinetics than the wildtype (WT) antibody at pH 6.0 were successfully identified. The mutations were further combined and characterized for pH-dependent FcRn binding properties, thermal stability and the FcγRIIIa and rheumatoid factor binding. The most promising variants, YD (M252Y/T256D), DQ (T256D/T307Q) and DW (T256D/T307W), exhibited significantly improved binding to FcRn at pH 6.0 and retained similar binding properties as WT at pH 7.4. The pharmacokinetics in human FcRn transgenic mice and cynomolgus monkeys demonstrated that these properties translated to significantly prolonged plasma elimination half-life compared to the WT control. The novel variants exhibited thermal stability and binding to FcγRIIIa in the range comparable to clinically validated YTE and LS variants, and showed no enhanced binding to rheumatoid factor compared to the WT control. These engineered Fc mutants are promising new variants that are widely applicable to therapeutic antibodies, to extend their circulation half-life with obvious benefits of increased efficacy, and reduced dose and administration frequency.

Like this post but not a member? Please join!

Filed Under: Antibody discovery, Antibody therapeutic, New articles Tagged With: antibody engineering, antibody therapeutics, bispecific, glycosylation, next-generation sequencing

Antibody Engineering & Therapeutics Student and Post-doc Poster Competition

September 11, 2019 by Janice Reichert

Attention Student and Post-doc Members!
To recognize the research activities of promising student and postdoctoral attendees of the Antibody Engineering & Therapeutics conference, The Antibody Society is sponsoring a  student/postdoc poster competition. Two winners will be selected to receive:

1) Complimentary registration to attend the conference and pre-conference sessions;

2) An opportunity to give a short oral presentation of their work in a conference session; and

3) Support for travel expenses (up to $400 for domestic or $800 for international flights, 3 nights at the hotel, ground transportation).

In order to be considered for this poster competition, you must be a student or postdoc member of The Antibody Society. If you are not already a member, you may register here for a free student or postdoc membership:

You must also check the box on the poster submission form indicating that you want your abstract to be considered for the poster competition. Your poster abstract must be submitted using the poster submission form here.

The deadline for submission of your poster abstract is October 15, 2019.
Winners will be notified by Friday, October 25, 2019.
Poster abstracts may be submitted and accepted for presentation at the conference after October 15, but any submissions received after October 15 will not be considered for the poster competition.

Interested in attending the Antibody Engineering & Therapeutics meeting? Society members save 15% on the registration fee – contact us at membership@antibodysociety.org for the code!

 

Filed Under: Meetings, The Antibody Society Tagged With: antibody engineering

Most read from mAbs, May-June 2019

May 23, 2019 by Janice Reichert

The Antibody Society is pleased  to be affiliated with mAbs, a multi-disciplinary journal dedicated to advancing the art and science of antibody research and development. We hope you enjoy these summaries based on the abstracts of the most read papers published in a recent issue.

All the articles are open access; PDFs can be freely downloaded by following the links below.

Issue 11.4 (May-June 2019)

Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells.

In this review, Darowski et al. summarize emerging approaches that aim to further evolve CAR-T cell therapy based on combinations of so-called universal or modular CAR-(modCAR-)T cells, and their respective adaptor molecules (CAR-adaptors), which mediate the crosslinking between target and effector cells. The activity of such modCAR-T cells is entirely dependent on binding of the respective CAR-adaptor to both a tumor antigen and to the CAR-expressing T cell. Contrary to conventional CAR-T cells, where the immunological synapse is established by direct interaction of CAR and membrane-bound target, modCAR-T cells provide a highly flexible and customizable development of the CAR-T cell concept and offer an additional possibility to control T cell activity.

Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies.

Using a sequence-based discovery platform, Trinklein et al. identified new anti-CD3 antibodies from humanized rats that bind to multiple epitopes and elicit varying levels of T-cell activation. In T-BsAb format, 12 different anti-CD3 arms induce equivalent levels of tumor cell lysis by primary T-cells, but potency varies by a thousand-fold. The lead CD3-targeting arm stimulates very low levels of cytokine release, but drives robust tumor antigen-specific killing in vitro and in a mouse xenograft model. This new CD3-targeting antibody underpins a next-generation T-BsAb platform in which potent cytotoxicity is uncoupled from high levels of cytokine release, which may lead to a wider therapeutic window in the clinic.

Sym021, a promising anti-PD1 clinical candidate antibody derived from a new chicken antibody discovery platform.

In this study by Gjetting et al., the Symplex antibody discovery platform was adapted to chicken immunoglobulin genes and combined with high-throughput humanization of antibody frameworks by “mass complementarity-determining region grafting”. Wild type chickens were immunized with an immune checkpoint inhibitor programmed cell death 1 (PD1) antigen, and a repertoire of 144 antibodies was generated. The PD1 antibody repertoire was successfully humanized, and the authors found that most humanized antibodies retained affinity largely similar to that of the parental chicken antibodies. The lead antibody Sym021 blocked PD-L1 and PD-L2 ligand binding, resulting in elevated T-cell cytokine production in vitro. Detailed epitope mapping showed that the epitope recognized by Sym021 was unique compared to the clinically approved PD1 antibodies pembrolizumab and nivolumab. Moreover, Sym021 bound human PD1 with a stronger affinity (30 pM) compared to nivolumab and pembrolizumab, while also cross-reacting with cynomolgus and mouse PD1. This enabled direct testing of Sym021 in the syngeneic mouse in vivo cancer models and evaluation of preclinical toxicology in cynomolgus monkeys. Preclinical in vivo evaluation in various murine and human tumor models demonstrated a pronounced anti-tumor effect of Sym021, supporting its current evaluation in a Phase 1 clinical trial.

Filed Under: Antibody discovery, Antibody therapeutic, Bispecific antibodies, Immune checkpoint modulators, New articles Tagged With: antibody engineering, antibody therapeutics, bispecific, immune checkpoints, T cells

Most read from mAbs, April 2019

April 24, 2019 by Janice Reichert

The Antibody Society is pleased and proud to be affiliated with mAbs, a multi-disciplinary journal dedicated to advancing the art and science of antibody research and development. We hope you enjoy these summaries based on the abstracts of the most read papers published in a recent issue. All the articles are open access; PDFs can be freely downloaded by following the links below.

Issue 11.3 (April 2019)

CH2 domain orientation of human immunoglobulin G in solution: Structural comparison of glycosylated and aglycosylated Fc regions using small-angle X-ray scattering

Yageta et al examined the small-angle X-ray scattering (SAXS) profile of the glycosylated Fc region (gFc) and aglycosylated Fc region (aFc) in solution to determine if removal of the N-linked glycan alters the CH2 domain orientation in the Fc region. For both gFc and aFc, the best-fitted SAXS profiles corresponded to ones calculated based on the crystal structure of gFc that formed a “semi-closed” CH2 domain orientation. Collectively, the data indicated that the removal of the N-linked glycan only negligibly affected the CH2 domain orientation in solution. Their findings will guide the development of methodology for the production of highly refined functional Fc variants.

Charge variants characterization and release assay development for co-formulated antibodies as a combination therapy

Characterization of co-formulated biologics can be challenging due to the high degree of similarity in the physicochemical properties of co-formulated proteins, especially at different concentrations of individual components. In this new report, Cao et al present the results of a deamidation study of one monoclonal antibody component (mAb-B) in co-formulated combination antibodies (referred to as COMBO) that contain various ratios of mAb-A and mAb-B. A single deamidation site in the complementarity-determining region of mAb-B was identified as a critical quality attribute (CQA) due to its impact on biological activity. A conventional charge-based method of monitoring mAb-B deamidation presented specificity and robustness challenges, especially when mAb-B was a minor component in the COMBO, making it unsuitable for lot release and stability testing. The authors developed and qualified a new, quality-control-friendly, single quadrupole Dalton mass detector (QDa)–based method to monitor site-specific deamidation. Their approach can be also used as a multi-attribute method for monitoring other quality attributes in COMBO. This analytical paradigm is applicable to the identification of CQAs in combination therapeutic molecules, and to the subsequent development of a highly specific, highly sensitive, and sufficiently robust method for routine monitoring CQAs for lot release test and during stability studies.

Capture and display of antibodies secreted by hybridoma cells enables fluorescent on-cell screening

Puligedda et. al describe a system in which hybridomas specifically capture and display the mAbs they secrete. Using On-Cell mAb Screening (OCMS™), monoclonal antibodies (mAbs) displayed on the cell surface can be rapidly assayed for expression level and binding specificity using fluorescent antigens with high-content (image-based) methods or flow cytometry. OCMS™ demonstrated specific mAb binding to poliovirus and rabies virus by forming a cell surface IgG “cap”, as a universal assay for anti-viral mAbs. The authors produced and characterized OCMS™-enabled hybridomas secreting mAbs that neutralize poliovirus and used fluorescence microscopy to identify and clone a human mAb specific for the human N-methyl-D-aspartate receptor. They also used OCMS™ to assess expression and antigen binding of a recombinant mAb produced in 293T cells.

Physicochemical and functional assessments demonstrating analytical similarity between rituximab biosimilar HLX01 and the MabThera®

As discussed by Xu et al, development of bio-therapeutics has exhibited exponential growth in China over the past decade. However, no biosimilar drug has been approved in China (CN) due to the lack of a national biosimilar regulatory guidance. HLX01, a rituximab biosimilar developed in China under European Medicines Agency biosimilar guidelines and requirements, was the first such drug submitted for regulatory review in China, and it is expected to receive approval there as a biosimilar product. To demonstrate the analytical similarities of HLX01, CN-rituximab (sourced in China but manufactured in Europe) and EU-rituximab (sourced and manufactured in Europe), an extensive 3-way physicochemical and functional similarity assessment using a series of orthogonal and state-of-the-art techniques was conducted, following the similarity requirement guidelines recently published by China’s Center for Drug Evaluation. The results of the similarity study showed an identical protein amino acid sequence and highly similar primary structures between HLX01 and the reference product (RP) MabThera®, along with high similarities in higher order structures, potency, integrity, purity and impurity profiles, biological and immunological binding functions, as well as degradation behaviors under stress conditions. In addition, HLX01 presented slightly lower aggregates and better photostability compared with the RP. Despite slight changes in relative abundance of glycan moieties and heavy chain C-terminal lysine modification, no differences in biological activities and immunological properties were observed between the RP and HLX01. In conclusion, HLX01 is highly similar to CN- and EU-sourced RP in terms of physicochemical properties and biological activities, suggesting similar product quality, efficacy, and safety. The regulatory requirements interpreted and applied towards the HLX01 marketing application sets a precedent for analytical similarity assessment of biosimilar products in China.

Like this post but not a member? Please join!

Filed Under: Ab news, Antibody discovery, Publication Tagged With: antibody combinations, antibody discovery, antibody engineering, antibody screening, biosimilar

« Previous Page
Next Page »

mabs

mabs

The Official Journal of The Antibody Society

Career Center

Our Career Center is a premier resource to connect highly qualified talent with matching career opportunities. Visit for details on over 800 jobs!

AIRR Community

AIRR Community

The Adaptive Immune Receptor Repertoire Community is a research-driven group organizing around the use of high-throughput sequencing technologies to study antibody/B-cell and T-cell receptor repertoires.

Recent Posts

  • New episode of the On AIRR podcast is here! June 26, 2025
  • Zooming into the Community III — A Milestone Virtual Gathering! June 3, 2025
  • Register now for the June 26th AIRR Community Seminar Series June 3, 2025

Archives

Follow us online

  • Email
  • LinkedIn
  • Twitter
  • YouTube
  • Home
  • Privacy & Terms of Use
  • About
  • Directors and Officers
  • Advisors
  • Sponsors & Partners
  • Mission & Activities
  • Join the Society
  • Membership Levels
  • Members only
  • Login
  • Antibody therapeutics approved or in regulatory review in the EU or US
  • Meeting reports
  • Presentations
  • Contact

©2015 - scicomvisuals