The Antibody Society

the official website of the antibody society

An international non-profit supporting antibody-related research and development.

  • LOG IN
  • BECOME A MEMBER
  • About
    • Mission & Activities
    • Directors and Officers
    • Marketing & Promotions
    • The Antibody Society’s Committees
      • Meetings Committee
      • AIRR Community Working Groups & Sub-Committees
    • Sponsors & Partners
  • Society meetings
    • Computational Antibody Discovery: State of the Art
      • Computational Antibody Discovery Symposium Participants
    • Harnessing Cytokines for Cancer Immunotherapy Symposium
    • Biopharmaceutical Informatics Symposium
    • Emerging Cancer Therapies Leveraging Gamma-Delta Effector T cells Symposium
    • Emerging Immunotherapeutics for Ovarian Cancer Symposium
    • AIRR Community Meetings
    • Antibody Engineering & Therapeutics (US) 2024
      • 2022 Antibody Engineering & Therapeutics
      • 2020 Antibody Engineering & Therapeutics
      • 2019 Antibody Engineering & Therapeutics
      • 2018 Antibody Engineering & Therapeutics
      • What is INN a Name?
        • INN issue updates
    • Antibody Engineering & Therapeutics Europe 10 – 12 June, 2025 | Congress Center, Basel Switzerland.
      • Scientific Advisors, Antibody Engineering & Therapeutics Europe
    • FOCIS Symposia
  • AIRR Community
    • AIRR Community News
    • AIRR Community Newsletter
    • AIRR Community Seminar Series
    • AIRR Community Meetings
      • Zooming into the Community III
      • AIRR Community Meeting VII – Learnings and Perspectives
      • AIRR Community Special Event 2023  – Zooming in to the Community II
      • AIRR Community Meeting VI: “Exploring New Frontiers”
      • AIRR Community Meeting V: “Zooming in to the AIRR Community”
      • AIRR Community Meeting V Pre-Meetings
        • AIRR-seq in the Pandemic
        • AIRR-seq Biological Standards and Workflows
      • AIRR Community Special Event: “Response to COVID-19”
      • AIRR Community Meeting IV: “Bridging the Gaps”
      • AIRR Community Meeting III
        • Day 1
        • Day 2
        • Day 3
        • Day 4
      • AIRR Community Meeting II
      • AIRR Community Meeting I
    • On AIRR – An AIRR Community Podcast
    • AIRR Data Commons
    • AIRR-C Germline Database Resources
    • AIRR Community Publications
    • AIRR Community Working Groups
      • Biological Resources Working Group
      • Common Repository Working Group
      • Diagnostics Working Group
      • Germline Database Working Group
      • Legal and Ethics Working Group
      • Software Working Group
      • Standards Working Group
    • AIRR Community Sub-Committees
      • Communications Sub-Committee
      • Executive Sub-Committee
      • Inferred Allele Review Committee
      • Meetings Sub-Committee
      • Strategic Planning Sub-Committee
    • AIRR Community Webinar Series
    • AIRR Community Calendar
    • AIRR Community Resources
  • Members only
    • Login
    • Note to members
    • Member discount codes
    • 2025 Calendar of Events
    • James S. Huston Antibody Science Talent Award
      • 2024 James S. Huston Antibody Science Talent Award Recipient
      • 2023 James S. Huston Antibody Science Talent Award Recipient
      • 2022 James S. Huston Antibody Science Talent Award Recipient
      • 2021 James S. Huston Antibody Science Talent Award Recipient
      • 2020 James S. Huston Antibody Science Talent Award Recipient
      • Huston Award submission guidelines
    • Research Competitions
      • Research Competition Winners
    • Science Writing Competition
      • Science Writing Competition Winners
    • Imaging Competition
      • Imaging Calendar Competition winners
        • The Antibody Society 2025 Calendar
        • The Antibody Society 2024 Calendar
    • Antibodies in early-stage studies
    • Presentations
  • Upcoming meetings in 2025
  • Web Resources
    • Society Publications
    • Antibody News
    • Antibody News Podcast
    • Antibody therapeutics approved or in regulatory review in the EU or US
      • Antibody therapeutics product data
    • Antibodies in late-stage clinical studies
    • Research Resources
    • Education Resources
  • Career Center
    • Career Shorts
  • Learning Center
    • Upcoming Webinars in 2025
    • The Antibody Series Lectures
    • Antibody Discovery & Development
    • Adaptive Immune Receptor Repertoires
    • Antibodies to Watch
    • Commercializing Antibody Therapeutics
    • Antibody Validation
      • 4th International Antibody Validation Meeting, Sep 2023
    • Snakebite antivenoms: Global challenges and progress toward recombinant antibody therapeutics
You are here: Home / Archives for antibody therapeutics

“Antibodies to Watch in 2020” is now online!

December 19, 2019 by Janice Reichert

This 2020 installment of the annual ‘Antibodies to Watch’ series documents the antibody therapeutics approved in 2019 and in regulatory review in the United States or European Union, as well as those in late-stage clinical studies, as of November 2019*.  At this time, a total of 5 novel antibody therapeutics (romosozumab, risankizumab, polatuzumab vedotin, brolucizumab, and crizanlizumab) had been granted a first approval in either the US or EU, and marketing applications for 13 novel antibody therapeutics (eptinezumab, teprotumumab, enfortumab vedotin, isatuximab, [fam-]trastuzumab deruxtecan, inebilizumab, leronlimab, sacituzumab govitecan, satralizumab, narsoplimab, tafasitamab, REGNEB3 and naxituximab) were undergoing review in these regions, which represent the major markets for antibody therapeutics. Also as of November 2019, 79 novel antibodies were undergoing evaluation in late-stage clinical studies. Of the 79 antibodies, 39 were undergoing evaluation in late-stage studies for non-cancer indications, with 2 of these (ublituximab, pamrevlumab) also in late-stage studies for cancer indications. Companies developing 7 (tanezumab, aducanumab, evinacumab, etrolizumab, sutimlimab, anifrolumab, and teplizumab) of the 39 drugs have indicated that they may submit a marketing application in either the US or EU in 2020. Of the 79 antibodies in late-stage studies, 40 were undergoing evaluation as treatments for cancer, and potentially 9 of these (belantamab mafodotin, oportuzumab monatox, margetuximab, dostarlimab, spartalizumab, 131I-omburtamab, loncastuximab tesirine, balstilimab, and zalifrelimab) may enter regulatory review in late 2019 or in 2020. Overall, the biopharmaceutical industry’s clinical pipeline of antibody therapeutics is robust, and should provide a continuous supply of innovative products for patients in the future.

*Note on key updates through December 20, 2019: 1) the US Food and Drug Administration granted accelerated approval to [fam-]trastuzumab deruxtecan (Enhertu) on December 20, 2019; 2) the US Food and Drug Administration granted accelerated approval to enfortumab vedotin-ejfv (Padcev) on December 18, 2019, bringing the total number of novel antibody therapeutics granted a first approval in either the US or EU during 2019 to 7; 3) the European Commission approved romosozumab on December 9, 2019; 4) the European Medicines Agency issued a positive opinion for brolucizumab; 5) Sesen Bio initiated a rolling biologics license application (BLA) on December 6, 2019; 6) GlaxoSmithKline submitted a BLA for belantamab mafodotin; 7) Macrogenics submitted a BLA for margetuximab; and 8) the status of the Phase 3 study (NCT04128696) of GSK3359609 in patients with head and neck squamous cell carcinoma was updated to recruiting from not yet recruiting.

Filed Under: Ab news, Uncategorized Tagged With: antibody therapeutics, approved antibodies, European Medicines Agency, Food and Drug Administration

Antibody Engineering & Therapeutics, December 2019

December 17, 2019 by Janice Reichert

Thank you for joining us at The Antibody Society’s annual Antibody Engineering & Therapeutics meeting held December 9-13, 2019 in San Diego. The meeting was a great opportunity for Society members to connect with industry and academic scientists and executives from around the world, and learn about advances in antibody discovery and development.

As always, The Antibody Society’s members designed the scientific program and acted as session Chairs. The meeting featured sessions on Antibody Libraries, Selection, Screening and Engineering; Bioinformatics and Computational Tools for Antibody Optimization and Engineering; Clinical Data and Lessons from Cancer Immunotherapy; Systems Immunology for Target Discovery; and Targeting Subcellular Trafficking Pathways to Generate Antibody Therapeutics.

AE&T Student/Postdoc Poster Competition

The Society sponsored a poster competition for students and postdocs, with winners receiving complimentary registration, support for travel expenses, and an opportunity to present at the conference. Congratulations to the winners:

Timothy Czajka, University of New York at Albany. Poster title: RIP-Off: An Intrabody-based Strategy to Neutralize Ricin and other Ribosome-Inactivating Protein (RIP) Toxins.

Kamal Joshi, PhD., Genentech. Poster title: Toward Deeper Understanding of Bispecific Antibodies

“Thank you again to the Antibody Society for this recognition and opportunity to speak here.  This is my third time attending the Antibody Engineering and Therapeutics conference and each time I’ve learned more than I could possibly remember and return to the lab with a huge surge of excitement and several new ideas that I’d like to apply to my own project.  I’m honored to be able to present my own research this year alongside so many fascinating talks and to be able to engage with many different experts in the field.  I would also like to thank my advisor, Nicholas Mantis, and Anne Messer for their help with my research and encouragement to attend and apply for this award.” Timothy Czajka

 

“It is an honor to receive this award. I would like to thank the judges for conferring this recognition on my work. I would also like to thank the Antibody Society, of course for funding my trip here but more importantly for organizing these fantastic meetings and providing a solid platform for the exchange of the latest information on antibody research and development benefiting all including early stage career scientists like me. It’s a real treat coming back to this meeting every time. Not only do I learn what is ongoing in the field, this meeting also provides me the opportunity to network with fellow scientists and facilitate connections. So again, thank you to the Antibody Society for this award. Thank you all.” Kamal Joshi, Ph.D.

 

Moments at Antibody Engineering & Therapeutics

The Antibody Society’s T shirts were hot items
Poster award winner Kamal Joshi
Poster award winner Timothy Czajka

At The Antibody Society’s booth
At the Society’s booth v2
At the Antibody Society’s booth v3

Incoming President Paul Carter with outgoing President Kerry Chester
Specifica presentation
Antibody Solutions

At the Ablexis / AlivaMab booth
At the OmniAb booth
At Trianni’s booth

At ImmunoPrecise’s booth
At the Twist Bioscience booth
At Aldevron’s booth

Our fabulous conference managers
Chiara Capobianco on the harp
View of San Diego, Dec 2019

 

We look forward to seeing you at AE&T in December 2020!

All Society members receive discounts on registration to Antibody Engineering & Therapeutics (US), as well as registration at many antibody-related meetings.

Filed Under: Meetings Tagged With: antibody engineering, antibody therapeutics

“Antibodies to Watch in 2020” at PEGS Europe

November 25, 2019 by The Antibody Society

Over the past decade, the ‘Antibodies to Watch’ article series has documented the results of the global biopharmaceutical industry’s efforts to bring innovative antibody therapeutics to patients in need. Dr. Janice Reichert, Executive Director of The Antibody Society, offered a preview of the 2020 version on Wednesday November 20, 2019 during the ‘Developing Successful Antibody Products’ session at PEGS Europe.

‘Antibodies to watch in 2020’ includes updates on recent and anticipated events relevant to antibody therapeutics in clinical development. Data for antibody therapeutics that were first approved in either the US or EU during 2019, as well as several products first approved in Russia or India, were provided. Antibody therapeutics undergoing regulatory review by the Food and Drug Administration or the European Medicines Agency as of November 2019 were also discussed. Brief summaries of antibody therapeutics in late-stage clinical study that may progress to regulatory review in late 2019 or 2020, based on public disclosures by the sponsoring companies, were included. In concluding, Dr. Reichert noted that the late-stage clinical pipeline is robust, and she anticipated that more antibody therapeutics will be in late-stage studies in 2020 than any year previously documented. Remarkably, compared to 2010, the number of antibody therapeutics currently in late-stage studies has nearly tripled (to 75 antibody therapeutics).

The ‘Antibodies to watch in 2020′ presentation can be downloaded here.

The Antibody Society was very pleased to see so many of our corporate sponsors in attendance at PEGS Europe!

Ablexis / AlivaMab
Aldevron
Antibody Solutions

Bio-Techne
Geneious Biologics
ImmunoPrecise

Trianni
Twist Bioscience

Filed Under: Antibody therapeutic, Clinical pipeline, European Medicines Agency, Food and Drug Administration, Uncategorized Tagged With: Antibodies to watch, antibody therapeutics, approved antibodies

Crizanlizumab-tmca (Adakveo) approved by FDA

November 17, 2019 by Janice Reichert

On November 15, 2019, the U.S. Food and Drug Administration approved crizanlizumab-tmca (Adakveo) as a treatment to reduce the frequency of vaso-occlusive crisis (VOC), which occurs when blood circulation is obstructed by sickled red blood cells, for patients age 16 years and older. Crizanlizumab is a humanized antibody directed against P-selectin, which contributes to the pathogenesis of sickle cell disease, including vaso-occlusive events and hemolytic anemia. Crizanlizumab was granted Orphan Drug designation in the US and European Union for the treatment of VOC in patients with sickle cell disease, as well as FDA’s Breakthrough Therapy designation for prevention of VOCs in patients of all genotypes with sickle cell disease. A marketing application for crizanlizumab is undergoing review by the European Medicines Agency.

FDA’s approval was based on Phase 2 results from the SUSTAIN study (NCT01895361), which demonstrated that crizanlizumab provided significant benefit over placebo, such as:  1) the percentage of crizanlizumab-treated patients (5 mg/kg) who did not experience any vaso-occlusive crisis (VOC) was higher compared to those treated with placebo (36% vs 17%, P=0.010); 2) 45% reduction in the median annual rate of VOCs leading to health care visits in patients with or without hydroxyurea therapy compared to placebo (1.63 vs 2.98, P=0.010); 3) 42% reduction in median annual rate of days hospitalized versus placebo (4.00 vs 6.87 P=0.45), and 4) A three-fold longer median time to first VOC vs placebo (4.07 vs 1.38 months, P< 0.001). [1, 2]

1. Novartis. FDA accepts file and accelerates review of Novartis sickle cell disease medicine crizanlizumab (SEG101). July 16, 2019 press release.

2. Kutlar A, Kanter J, Liles DK, Alvarez OA, Cançado RD, Friedrisch JR, Knight-Madden JM, Bruederle A, Shi M, Zhu Z, et al. Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: A SUSTAIN study analysis. Am J Hematol. Am J Hematol. 2019 Jan;94(1):55-61. doi: 10.1002/ajh.25308.

Interested in more information about US- or EU- approved antibody therapeutics? The Antibody Society maintains a comprehensive table of approved mAb therapeutics and those in regulatory review in the EU or US in the Web Resources section of our website. 

Filed Under: Antibody therapeutic, Approvals, Food and Drug Administration Tagged With: antibody therapeutics, crizanlizumab, Food and Drug Administration

Feeding drug development programs with sufficient antibody

November 1, 2019 by The Antibody Society

Author: Nick Hutchinson, Fujifilm Diosynth Biotechnologies

The demand for antibody and antibody-related therapeutics continues to increase. [1] The United States Food and Drug Administration has approved ~ 100 antibody therapeutics for a wide range of treatments. Nearly 600 antibody drugs are in clinical trials, [1] with ~75 of these in pivotal Phase 2 or Phase 3 studies.

Small or even virtual companies are developing many of these molecules. Technical teams working within these organizations must understand the activities needed to successfully commercialize the drugs. One critical activity is establishment of production strategies capable of supplying the material requirements of pre-clinical development, toxicology studies, clinical trials and then, if successful, market demand.

Patients cannot benefit from life-saving medicines if the drug’s launch is delayed due to lack of the material required for each phase of development. Furthermore, companies that miss clinical milestones suffer from delayed investments, thus reducing the opportunity to reach the clinic in a timely manner and capture market share, which lowers future revenues.

Many start-up biotech firms have a laser-like focus on the pre-clinical development of their antibody candidates, but sooner or later they must consider a manufacturing strategy that enables pre-clinical or clinical programs to stay on track.

Is manufacturability an obstacle to development?

One question drug developers should consider is the extent to which the manufacturability of the candidate is likely to be problematic and jeopardise material supply. Many of the standard, full-length antibodies have well-understood properties and are relatively easy to manufacture, allowing timely delivery to the clinic. However, there is an increasing number of modalities within this product class, [2] e.g., bispecifics, Fc-fusions and antigen-binding fragments, which may present additional production challenges. These can include challenges such as low expression from cell lines suitable for use in manufacturing, poor stability during purification processes or the need for non-standard analytical methods.

One company I spoke to, for example, knew that they needed to increase the productivity of their cell cultures from below 0.5 g/L to greater than 3 g/L in order for the product to be commercially viable. Another company developing a monoclonal antibody explained that they needed a titer of ~ 10 g/L to ensure production efficiency was sufficiently high to allow them to be price competitive. A third company found that the isoelectric point of their Fc-fusion molecule was relatively low and they needed a tailored purification process for their product.

Companies developing standard IgG1, IgG2 or IgG4 products can leverage manufacturing platforms. [3] These allow production of different monoclonal antibodies with the required quality specifications and at high productivity with little process development. They offer a significant time- and cost-saving over the alternative, i.e, developing new processes for each new candidate. Companies with a pipeline of products may choose to invest in their own manufacturing platform, but, for many early-stage biotech companies it makes little sense to spend investors’ cash on production assets when there is considerable uncertainty around the likely success of a program. For this reason, many will outsource process development and manufacturing to a contract development and manufacturing organization (CDMO), many of whom will have their own established platform processes.

Early material supplies of antibody candidates

Cell line development scientists can generate stable, clonal cell banks derived from a production-ready host cell line in as little as 10 weeks following transfection. Cell cultures with transfectant pools can produce tens to hundreds of grams of material in as little as eight weeks following transfection. Scientists developing antibody therapeutics can use this antibody for their pre-clinical activities and initial formulation development experiments. In our experience, even at the pre-clinical stage, the drug development process can consume substantial amounts of material. Accurately determining material requirements at this stage will help ensure sufficient antibody is available.

Preclinical material supply might be met with bench-scale bioreactors, but we have worked on programs where the material requirements were sufficiently large that a 200-L mammalian cell culture run was needed, even though the cell line gave a high titer. This clearly demonstrated the utility of having a platform process because no additional process development on either the bioreactor conditions or the purification steps was needed. Expert developers of cell lines know that their host cell line will grow to high cell density under their platform conditions, and will select clones that combine high productivity with the desired product quality profile using high-throughput screening technologies.

Process development scientists operating platform processes typically allocate time, which would previously have been dedicated to manufacturing development, to the refinement of operating parameters and studies of manufacturing robustness that increase the likelihood of that full-scale production lots will be successfully released.

Supplying Toxicology and Early Clinical Material

Pilot-scale batches allow companies to predict large-scale manufacturing performance and refine scale-dependant process parameters. Companies often use material from the pilot-scale batch for toxicology work, stability studies and for generating reference standard, against which the first batch for clinical use can be released. It generally takes 6 – 8 months to reach this stage from the start of cell line development, yielding hundreds of grams of antibody, if not more.

For many companies, the demand for clinical-grade drug, manufactured to current Good Manufacturing Practices (GMP), can be met using bioreactors no larger in volume than 2000-L. The initial batch can be released within 12-14 months from the start of cell line development. Each batch can supply between 1 to 10 kilograms of antibody.

Modern, high-throughput manufacturing facilities provide enormous amounts of capacity such that with a robust, high-titer cell line no further scale-up may be required and firms can commercialize their product within the same facility they used for clinical lots. Others elect to scale-up still further to large-scale stainless steel manufacturing facilities, especially if the market demand is high and the overall process productivity is modest. More recently, firms are considering going to market with manufacturing processes that utilize smaller bioreactors operated in a continuous, perfusion mode. We believe such processes can yield over 15 kg of antibody from a 500-L bioreactor over a 4-week period. Deciding which approach to adopt is never easy because of uncertainties around factors such as dose requirements, overall market demand and competitive pressures. Experienced CDMOs will support customers through this decision-making process and will be able to provide invaluable advice.

In conclusion, many small biotech companies with new antibody drug assets can mitigate risks to drug development and commercialization timelines by thoroughly understanding the material supply requirements for preclinical, toxicology and clinical studies. Once they know this, they can determine how the need can be met by manufacturing organizations during process development and GMP production operations as part as an over-arching strategy for product commercialization.

[1] Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs. 2019;11(2):219-238. doi: 10.1080/19420862.2018.1556465.

[2] Scott M, Clark N. Next generation antibody therapeutics: Antibody fragments, dual-targeting strategies, and beyond… . European Pharmaceutical Review. 2009.

[3] Shukla AA, Wolfe LS, Mostafa SS, Norman C. Evolving trends in mAb production processes. Bioengineering & Translational Medicine. 2017;] 2(1): 58–69. doi: 10.1002/btm2.10061

 

Filed Under: Antibody therapeutic, Antibody therapeutics pipeline, Manufacturing Tagged With: antibody therapeutics, manufacturing

« Previous Page
Next Page »

mabs

mabs

The Official Journal of The Antibody Society

Career Center

Our Career Center is a premier resource to connect highly qualified talent with matching career opportunities. Visit for details on over 800 jobs!

AIRR Community

AIRR Community

The Adaptive Immune Receptor Repertoire Community is a research-driven group organizing around the use of high-throughput sequencing technologies to study antibody/B-cell and T-cell receptor repertoires.

Recent Posts

  • Zooming into the Community III — A Milestone Virtual Gathering! June 3, 2025
  • Register now for the June 26th AIRR Community Seminar Series June 3, 2025
  • Zooming into the Community III Starts Tomorrow! May 20, 2025

Archives

Follow us online

  • Email
  • LinkedIn
  • Twitter
  • YouTube
  • Home
  • Privacy & Terms of Use
  • About
  • Directors and Officers
  • Advisors
  • Sponsors & Partners
  • Mission & Activities
  • Join the Society
  • Membership Levels
  • Members only
  • Login
  • Antibody therapeutics approved or in regulatory review in the EU or US
  • Meeting reports
  • Presentations
  • Contact

©2015 - scicomvisuals