

HUmanized Genomic Orthologs for Antibody development

Accelerating Antibody Discovery with Fully Human Antibody Mouse HUGO-Ab[®] and Single B Cell Screening Technology AbDrop[®]

----- Empower You for Breakthroughs in Antibody Drug Development !

Shun (Shawn) Zhou Ph.D

R&D Director of Cyagen Bioscience

Jul 25 2024

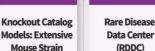
Cyagen and Biointron Partner to Empower Antibody Discovery

HUGO-Ab[®]

Transgenic Mice for Human Antibody Discovery

Drug Development Mouse Models

Downstream Breeding & Cohorts


Preclinical Drug Development CRO Services

"AI+CGT" **One-stop in vivo** and in vitro service platform efficacy evaluation platform

Expertly customized mouse models

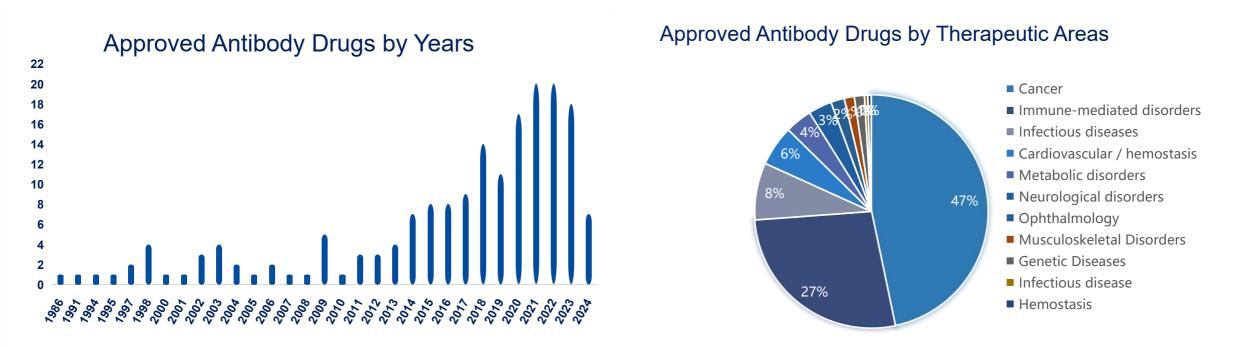
808 ¥ 468

Library

Data Center (RDDC)

AbDrop[®] Droplet-Based Antibody **Discovery Platform**

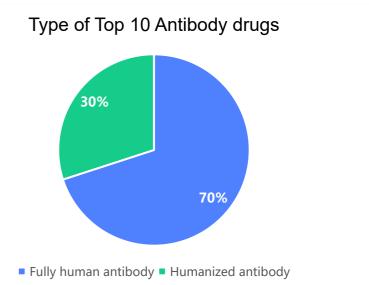
The World's Leading Provider of **Antibody Discovery and Antibody Recombinant Production**



- 1. Why is the transgenic human antibody mouse important for antibody drug development?
- 2. What are the advantages of human antibody mouse HUGO-Ab[®]?
- 3. How to accelerate antibody discovery with high-throughput single B technology AbDrob $^{\mathbb{R}}$

in HUGO-Ab[®] mice

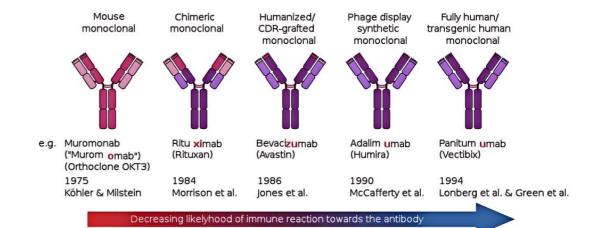
Trends and Distribution of Approved Antibody Drugs: An Overview



- The number of approved antibody drugs has increased significantly since the first approval in 1986 and has been a noticeable upward trend from 2015 onwards
- A substantial portion of the approved antibody drugs targets cancer and Immune-mediated disorders, making up 74% of the total approvals.
- High specificity, versatility and reduced side effect make antibody drugs a powerful option for treating a wide array of diseases, contributing to their increasing prevalence and success in clinical settings

🔇 Cyagen

Drug Name	Manufacturer(s)	Sales 2023 (USD M)	Diseases	Specification
Keytruda	Merck	25011	Cancer	Humanized antibody
Humira	AbbVie	14404	Autoimmmune	Fully human antibody
Dupixent	Sanofi	11590	Autoimmmune	Fully human antibody
Stelara	Johnson & Johnson	10858	Autoimmmune	Fully human antibody
Darzalex	Johnson & Johnson	9744	Cancer	Fully human antibody
Opdivo	Bristol-Myers Squibb	9009	Cancer	Fully human antibody
Skyrizi	AbbVie	7763	Autoimmmune	Humanized antibody
Ocrevus	Roche	5750	Autoimmmune	Humanized antibody
Cosentyx	Novartis	4980	Autoimmmune	Fully human antibody
Imfinzi	AstraZeneca	4237	Cancer	Fully human antibody


- ◆ Top 10 antibody drugs generated 100 billion US dollars of sales in 2023.
- 70% of the top 10 antibody drugs are fully human antibodies, indicating a dominant trend towards using human antibodies in antibody drug development.

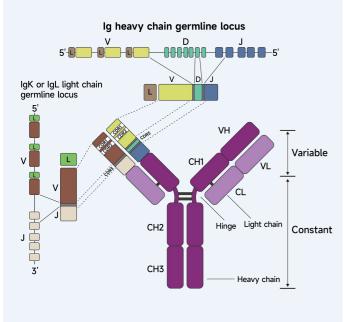
Usage of human antibody to overcome immunogenicity issues

First monoclonal antibody drug: **Orthoclone OKT3**, as a **mouse-derived antibody**, was withdrawn from the market in 2006 due to **immunogenicity issues**:

HAMA	Recognized by human immune system, triggering production of human anti- mouse antibodies (HAMA)	
High Dose	Mouse-derived antibodies have a short half-life, resulting in rapid clearance. Repeated high doses of drug further increase HAMA production	
Allergy	In rare cases, the use of mouse-derived antibodies could lead to severe allergic reactions, and in some instances, it even resulted in the patient deaths	

Format	Techniques	Advantages	Disadvantages	Immuno- genicity
Chimeric Antibody	Fusion of mouse variable antibody regions with human IgG	No	Not used anymore due to immnogenicity issues	High
Humanized Antibody	Grafting CDRs onto human frameworks	Lower cost, typical and traditional.	Risk of humanization level and success rate, high technical barrier	Moderate
	Human phage display libraries	Good for toxic antigen	Light-Heavy chain not naturally paired	Low or moderate
Fully Human Antibody	Single B cell selection from human PBMCs	Suitable for infectious diseases antigens	Limited to infectious diseases	Low
	Transgenic human antibody mice	Suitable for most situations	Limited access to use for the high cost and complicated licensing terms	Low

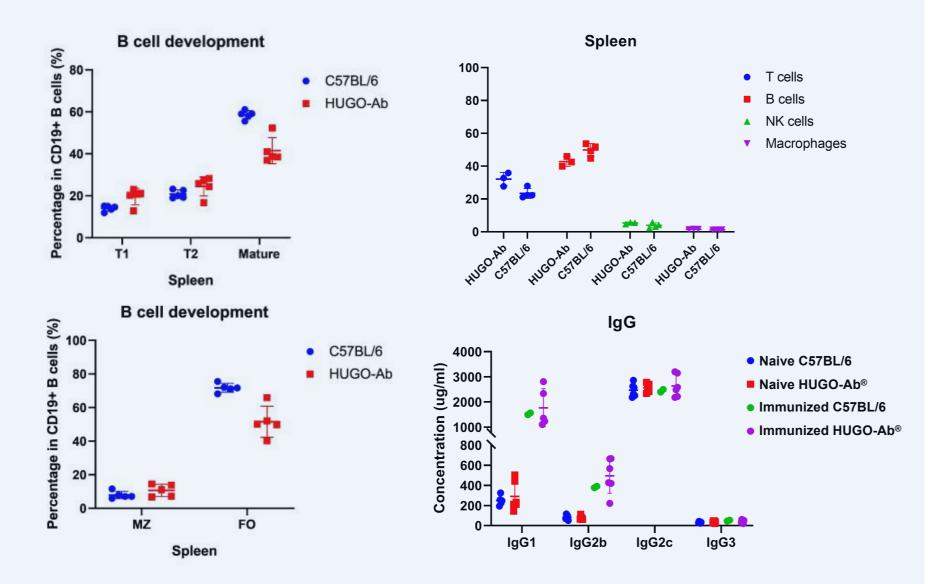
1. Lower Risk of Immunogenicity


- Naturally paired light and heavy chain
- Reducing the risk of immunogenicity and adverse reactions in patients
- 2. Efficient Sceening of High Specificity, High Affinity, Functional, and Developable Antibodies
- > Compatible with hybridoma, phage or yeast display, and single B cell screening without limitations
- > Natural molecules derived from in vivo evolution and selection

3. Time Saving

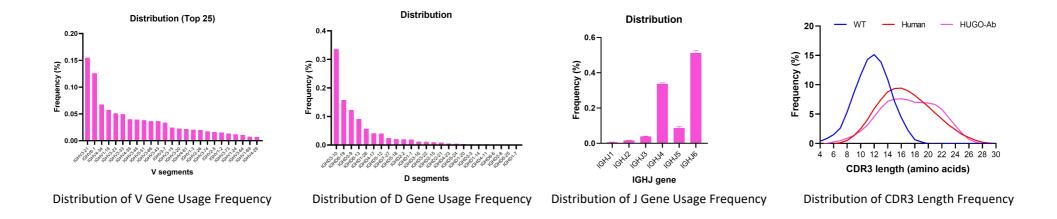
- > Antibody humanization engineering is not required and 3-4 months are saved
- > No risk of loss of affinity and developability

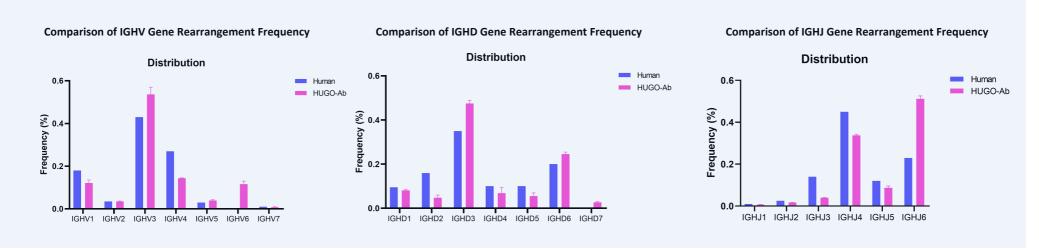
B HUGO-Ab[®] Fully Human Antibody Mouse


HUGO-Ab®

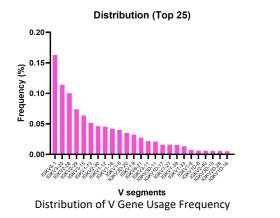
🄇 Cyagen

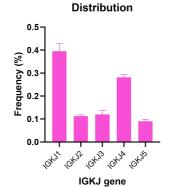
- HUmanized Genomic Ortholog for Antibody development
- Developed based on Cyagen's proprietary patent TurboKnockout® ES targeting technology
- In situ replacement of the full-length sequences of human VH, Vκ, and Vλ
- > Available in C57BL/6, BALB/c, and SJL strains

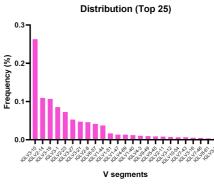

Ready to use with no string attached

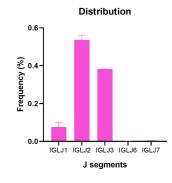


- HUGO-Ab[®] demonstrates normal B cell development compared to wild-type C57BL/6 mice
- HUGO-Ab[®] shows expected immunoglobulin IgG levels similar to those of wild-type C57BL/6 mice.



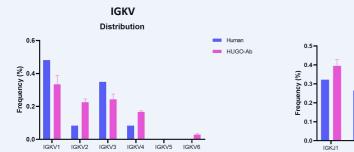

Comparison of Gene Rearrangement Frequency


κ Light Chain Gene Rearrangement



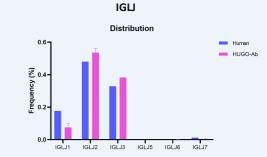
Distribution of J Gene Usage Frequency

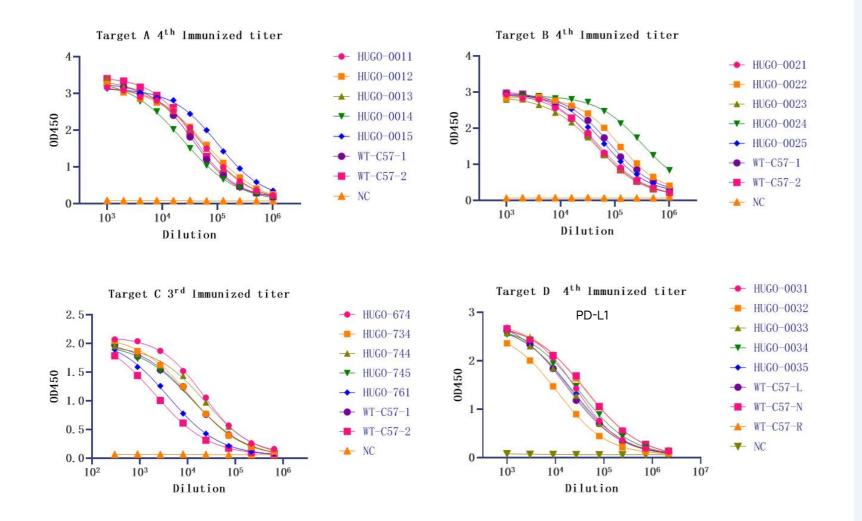
λ Light Chain Gene Rearrangement



Distribution of V Gene Usage Frequency

Distribution of J Gene Usage Frequency


Comparison of Gene Rearrangement Frequency

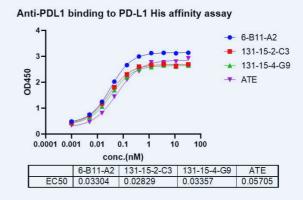

IGKJ

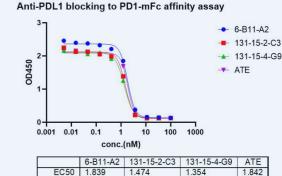
HUGO-Ab[®] Exhibit Excellent Immune Response Capabilities

Immunization Protocol

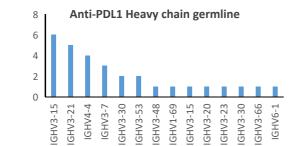
Stages	Immunization method
1 st immunization (D0)	protein + CFA, SC
2 nd immunization (D14)	protein + IFA, SC
3 rd immunization (D28)	protein + IFA, SC
4 th immunization (D43)	protein + IFA, SC
Boosting (D57)	protein, IP
Three days after boosting	Collect B cells

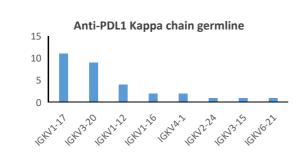
- > The serum antibody titer exceeds a dilution factor of half a million
- > HUGO-Ab[®] exhibits a slightly stronger immune response compared to the wild type C57BL/6

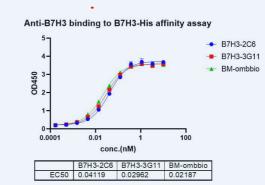

HUGO-Ab[®] Produce High-Affinity Antibody Molecules



Full human antibodies against PD-L1

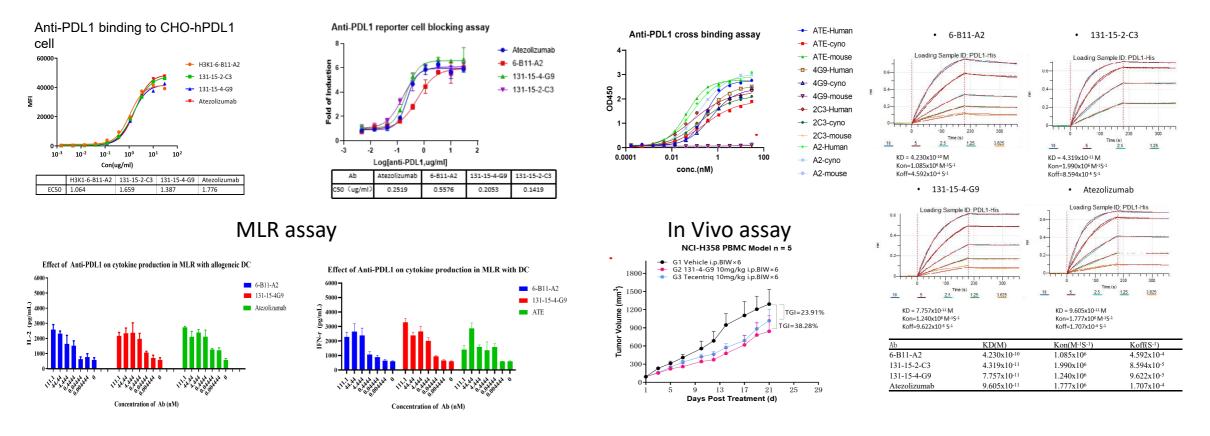

Anti-PDL1 affinity test




HC HC

LC

Anti-B7H3 affinity test


- Generating a diverse array of fully human VH and VL sequences.
- Generating high-affinity antibody molecules against antigens.

Human Anti-PD-L1 Antibodies Show Promising Affinity and Functionality

Kinetic test (BLI)

Cell-based assay

Cross binding assay

The anti-PD-L1 candidate molecule G9 is isolated from Hugo-Ab mice and demonstrates enhanced affinity and biological activity compared to atezolizumab

Product	Competitor1	Competitor2	Competitor3	Competitor4	Competitor5	Competitor6	HUGO-Ab
Method	In situ ES targeting	In situ ES targeting	Transgenic	Transgenic	Transgenic	Not disclosed	In situ ES targeting
Parental strain	BALB/c, CD1, NOD	C57B/L6	C57B/L6,FVB, 129	SD/HSD	C57B/L6, SJL	C57B/L6	C57B/L6, BALB/c, SJL
HC Fc	Mouse lgG1,2b,2c,3	Mouse IgG1,2b,2c,3	Rat IgG1,2b,2c	Rat IgG1,2a,2b	Rat IgG1,2a,2b	Not disclosed	Mouse IgG1,2b,2c,3
HC Repertoire	Complete	Complete	Partial	Complete	Complete	Complete	Complete
к LC Repertoire	Partial	Complete	Partial	Partial	Partial	Partial	Complete
λ LC Repertoire	Partial	No	Partial	Partial	Partial	Partial	Complete

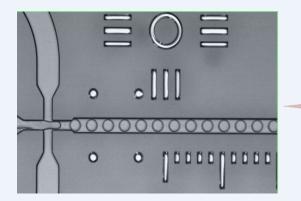
HUGO-Ab®

- HUmanized Genomic Ortholog for Antibody development
- Engineered using Cyagen's TurboKnockout®

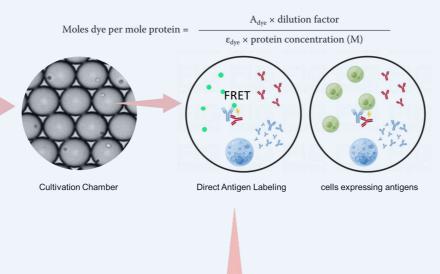
ES technology

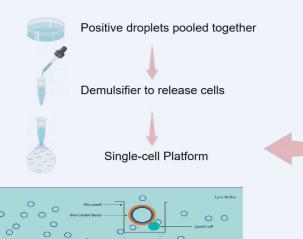
- > In situ replacing VH, VK and VL
- > Available in C57BL/6, BALB/c, and SJL strains
- **Complete sequences** of human-derived VH, Vk

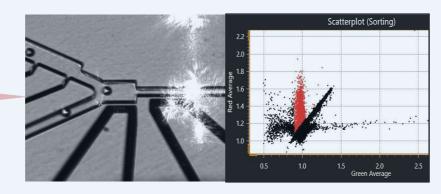
and $V\lambda$ genes


> Single B cell technology combines the advantages of hybridoma and phage display technologies

Technology	Diversity	Average Affinity	Species	Binder	Time
Hybridoma	~	~~~	Mouse	Natural form of IgG Chromosome instability	\bigcirc
Phage Display	~~	Depends	Diverse library	Unpaired light and heavy chains	
Single B Cell technology	~ ~ ~	~~~	Mouse/ Rabbit	Paired light and heavy chains	C


AbDrop[®]: Droplet Microfluidics Single B-cell Technology


Macro-droplet generation


Detection system for protein based binder or cell based binder selection

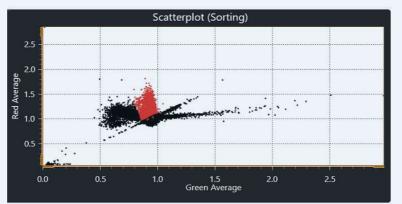
Exporting cells for 10X sequencing

Droplet sorting

AbDrop[®] Droplet-Based Single B-cell Screening platform

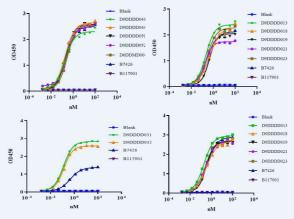
- Screening millions of plasma B cells in one day
- NGS sequencing of single B cell in one week
- Obtaining hundreds of naturally paired heavy and light chain at one time
- From screening to candidates in one month

Single B cell platform	Throughput	Automation	Cost	Sensitivity	Assay Capability	
					Multiplex testing	Capability on cell- based assay
Microengraved micro/nanowells-based	Medium (100,000/chip)	Low	Low	High	Ν	Ν
FACS-Based	High (millions cells/time)	Low	Low	Low	Y	Ν
Microfluidic Chamber- based (Beacon)	Relatively low (11,000/chip)	High	High	High	Y	Y
Microdroplets-based (AbDrop)	High (millions cells/chip)	Medium	Low	High	Y	Y


AbDrop[®] has advantages compared to other technologies overall

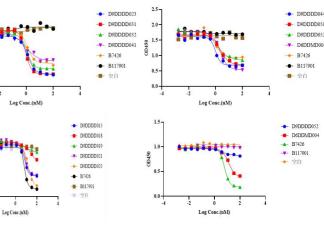

Basic info

Mouse	SBC1002-#1
Antigen	Recombinant Z protein
Titer	>64000
Number of cells	3.00E+08
Number of plasma cells	1.20E+06
Number of expression sequences	60


Sorting of positive microdroplet

Affinity measurement

HTP expression and ELISA assay



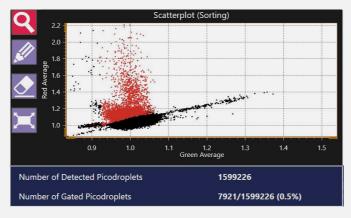
1.0-

-4

1.0 -

BIOINTRON AbDrop®

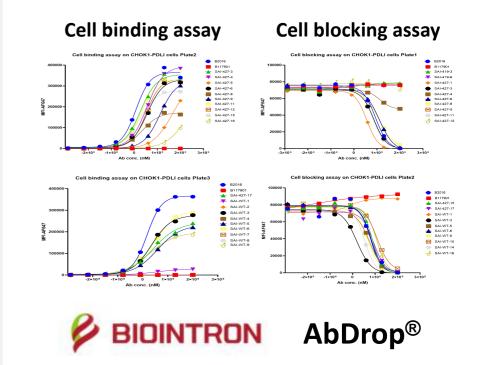
- 306 antibody sequences were obtained
- 60 antibody sequences were expressed
- 42 antibody sequences out of 60 were validated and exhibited protein-binding activity
- 26 antibody sequences demonstrated blocking functionality
- 43% of expressed antibodies were high-affinity and functional



Anti-PD-L1 antibody screening in HUGO-Ab[®] and C57BL/6

Scatterplot (Sorting)

WT positive droplet sorting


HUGO-Ab[®] positive droplet sorting

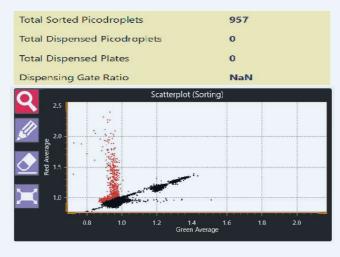
The total number of plasma cells enriched using CD138 beads: After 2 hours of culture, by gating positive cells, WT obtained 4,678 positive droplets, and HUGO-Ab[®] obtained 7,921 positive droplets.

10x sequencing results

Mouse	Sorted droplets	Cell amount	Paired sequence	Unique sequence	Highest frequency
HUGO-Ab [®]	7917	1809	1466	413	56
WT	4706	1689	1248	142	174

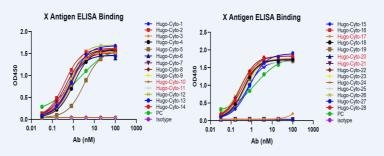
- 16 VS 17 antibody sequences show good affinity in HUGO-Ab[®] VS C57BL/6
- 6 VS 6 candidate molecules from HUGO-Ab® VS C57BL/6 surpassed the benchmark in binding and blocking activity
- Efficient screening of High affinity and functional

antibodies in HUGO-Ab® combined with AbDrop®



Project summary

Antigen: Protein X
Homology: 90% to mouse protein
Immunization titer: around 100K
Hybridoma screening: 2 binders
Microdroplets single B screening: 28 binders


Microdroplet Enrichment

Sequencing Data Analysis

590 Estimated Number of Cells	12, Mean Read		159 Number of Cells With Productive V-J Spanning Pair	
Parameter	s		Account	
Total Pairs	5	158		
Unique Pai	rs	34		
Highest frequ	ency	170 (85)		
Expression P	airs		34	

Antibody Expression and Binding Validation

AbDrop®

- Target antigen 90% to mouse protein
- 2 binders were only obtained by

hybridoma screening in HUGO-Ab®

• 28 binders were successfuly obtained

from HUGO-Ab[®] combined with

AbDrop[®].

Human Antibody Directly

Fully human antibody VH, VK and VL enable the mouse to generate human antibody molecules in highly rich diversity

Efficient and powerful

Millions of B cells are screened in a highthoughput way, and binding and activity assays are encapsulated to maximize the number of potential candidates.

2

No String Attached

Customers can easily access and use HUGO-Ab[®] mice without any milestone or royalty licensing fees.

Fast timeline

Antibody screening can be completed in just one week, reducing the entire antibody discovery process from 6 months to 3 months

LIVE WEBINAR

Accelerating Antibody Drug Discovery with Fully Human Antibody Mouse HUGO-Ab and High-Throughput Single B Cell Screening

Date and Time : July 25th, 2024 11:00am EST

🕝 Save My Seat

Email: animal-service@cyagen.com Email: info@biointron.com

Speaker: Shun Zhou, Ph.D.

Thanks