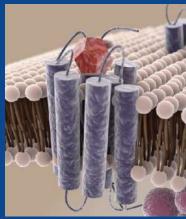



#### **Harnessing Divergent Species**

to Access Difficult and Conserved Antibody Targets


April 25, 2024 Antibody Society Webinar

Ross Chambers PhD VP of Antibody Discovery Integral Molecular, Philadelphia PA

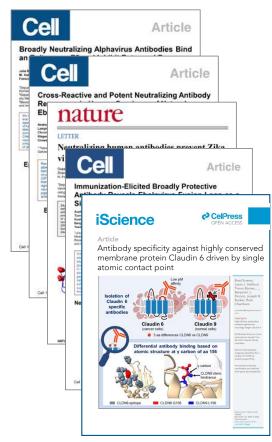
## Integral Molecular

The Industry Leader in Delivering Lead Antibodies Against Undruggable Targets





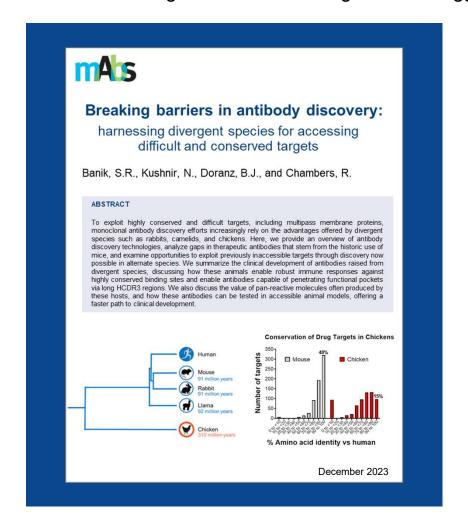
#### **Delivering MAbs against:**


- Complex membrane proteins
- Highly conserved epitopes
- Functional epitopes
- Epitopes with rare properties

- 20+ years working with challenging protein targets
- · Industry-leading epitope diversity
- Pipeline of therapeutic antibodies against complex targets
- Therapeutic MAbs licensed to AstraZeneca, Context Therapeutics, Cartexell, and others

## Trusted by 600+ Companies

500+ publications and patents, including Cell, Science, Nature








## Integral Molecular

The Industry Leader in Delivering Lead Antibodies Against Undruggable Targets



## How Divergent Species Can Access Conserved Targets



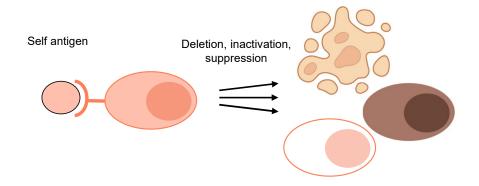
Gaps in antibody space & role of divergent species



Rabbits, Camelids, Chickens

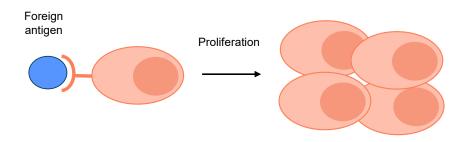


Chicken immunization has delivered:

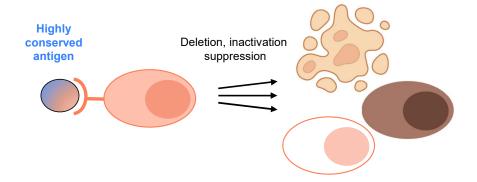

Antibodies against conserved targets
Agonist antibody
Exquisite specificity

## Why Are Conserved Targets Difficult for Antibody Discovery?

#### **Robust Immune Reaction**


# Foreign antigen Proliferation

#### **Immune Tolerance**

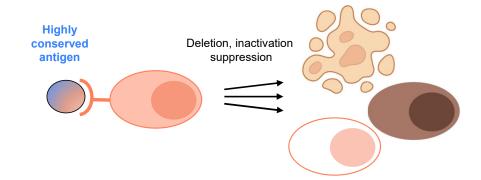



## Why Are Conserved Targets Difficult for Antibody Discovery?

#### **Robust Immune Reaction**



#### **Immune Tolerance**




#### Why Are Conserved Targets Difficult for Antibody Discovery?

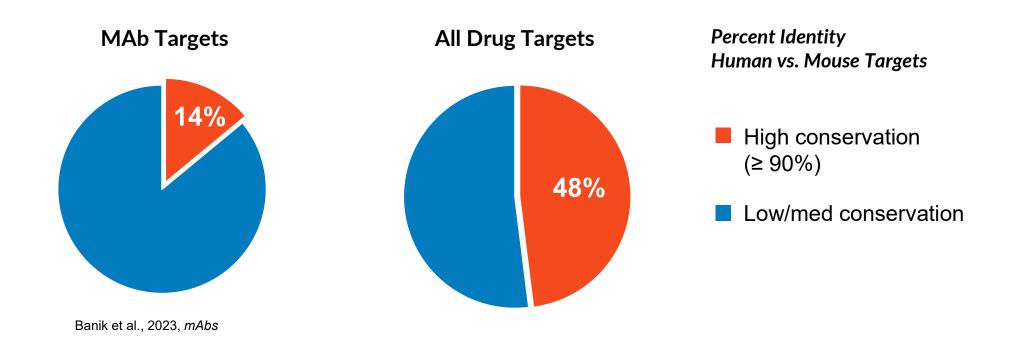
#### **Robust Immune Reaction**

# Proliferation





- Immune system recognizes self-antigen
  - Tolerance prevents immune system from attacking own body
- Conserved proteins resemble self-antigen

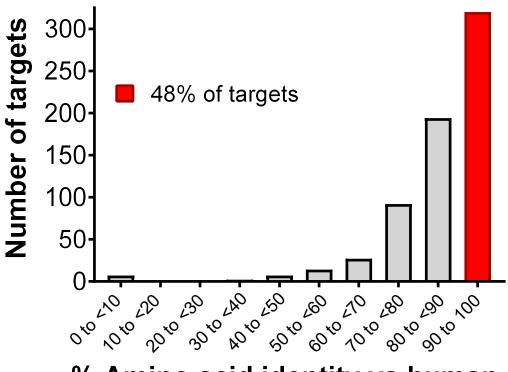

Conserved proteins make poor immunogens for therapeutic discovery

integral

Foreign

antigen

## Many Highly Conserved Targets Currently Undruggable by MAbs




#### Untapped opportunities for MAb discovery



#### ~Half of Drug Targets May Be Poor Immunogens in Mice

#### **Conservation of Drug Targets in Mice**



% Amino acid identity vs human



#### Antibody Enabling Technologies and Therapeutics

#### **Enabling Technologies** Therapeutic Antibody Development

Mouse hybridoma, 1975

Phage display, 1985 Antibody humanization, 1986

Antibody phage display, 1990 Rabbit homo-hybridoma,1995

B-cell cloning,1996

First approved murine MAb

-Muromonab-CD3 (Orthoclone OKT), 1986

First approved humanized murine MAb produced by CDR grafting

-Daclizumab (Zinbryta), 1997

First approved phage-derived and fully human MAb

-Adalimumab (Humira), 2002

First chicken MAb to enter clinical trials

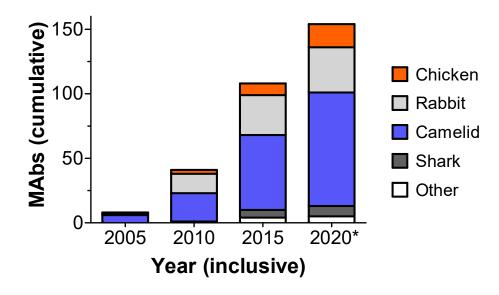
-Sym021, 2017

First approved MAb from a divergent host (camelid)

-Caplacizumab (Cablivi), 2018

First approved rabbit MAb

-Brolucizumab (Beovu), 2019

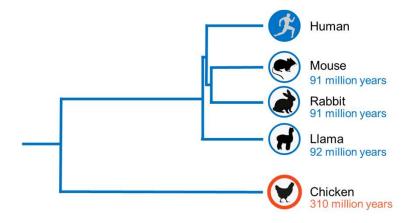

First Shark MAb to enter clinical trials

-AD-214, 2020



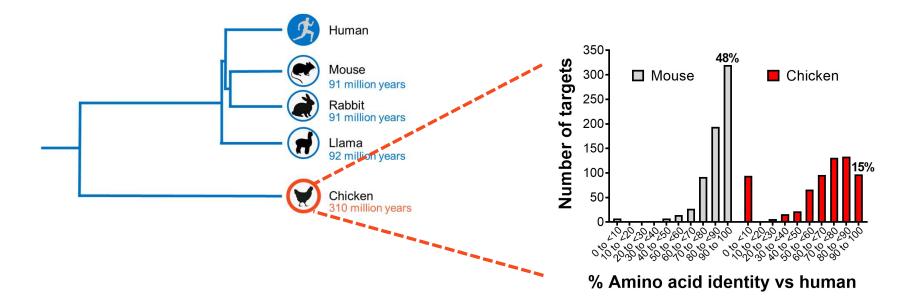
#### Divergent Species Increasingly Used for MAb Discovery

## MAbs From Divergent Species in Clinical and Preclinical Development

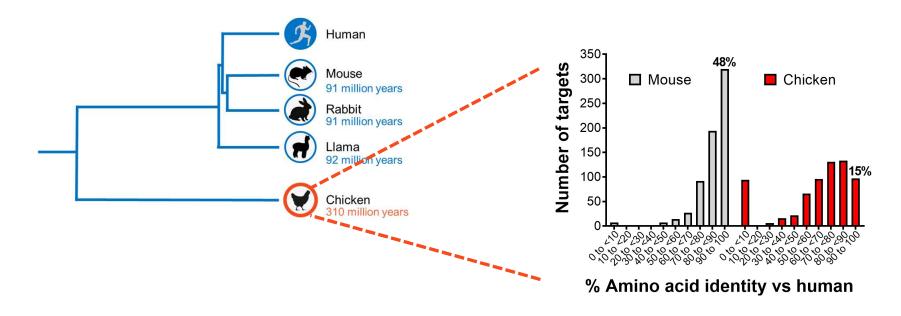



#### **Advantages of Divergent Species**

- Less immune tolerance
- 2. Long HCDR3 regions
- 3. Cross species-reactive antibodies




## 1. Divergent Species Avoid Immune Tolerance






## 1. Divergent Species Avoid Immune Tolerance

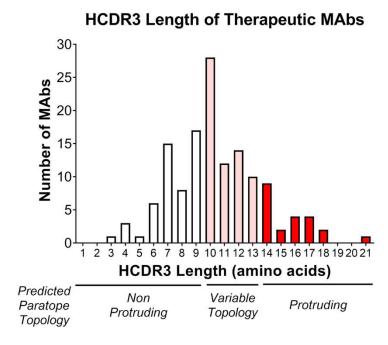


#### 1. Divergent Species Avoid Immune Tolerance



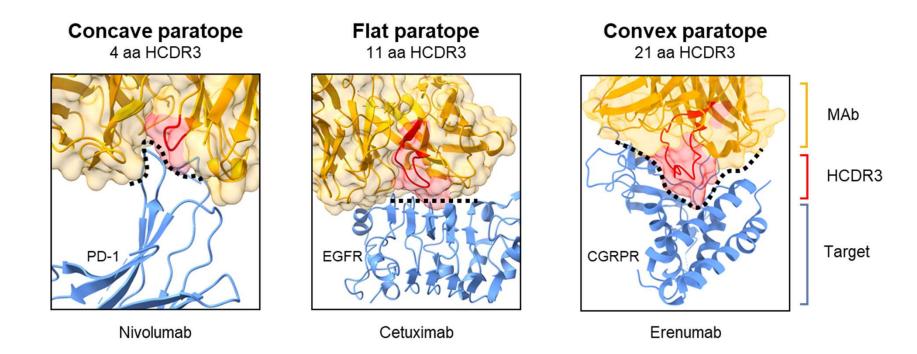
- Target antigen must be 'foreign' for host to mount effective immune response
- Sequence divergence important at epitopes of interest
- Chickens: long evolutionary distance + MAb structure similar to humans

Divergent species enable access to more targets and more epitopes


integral

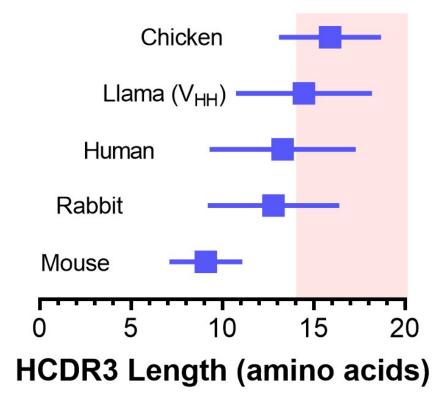
## 2. Longer HCDR3 Can Form Protruding Structures

- HCDR3 region correlates with paratope shape
- Ramsland et al., studied 50 antibody crystal structures


#### HCDR3:

- 1-9 aa: predominantly non-protruding
- 10-13 aa: variable
- 14+ aa: predominantly protruding



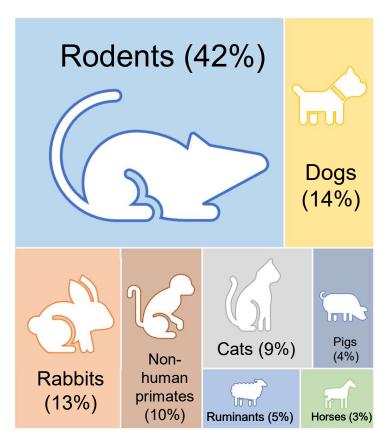



## Longer HCDR3 Can Access Pockets



#### Divergent Species Can Access Recessed Epitopes

- HCDR3 of antibody is most important for contacting the epitope
- Mouse HCDR3 relatively short
  - Tend to bind flat epitopes
- Longer sequences can protrude into functionally important recessed epitopes

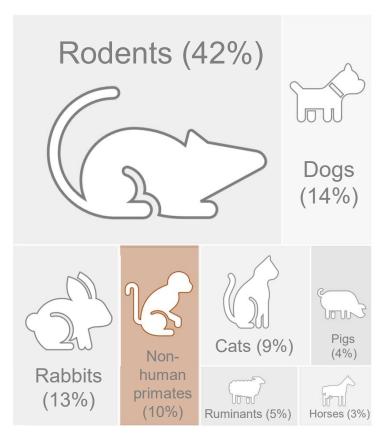



\*Kabat numbering used throughout



## 3. Cross Species-Reactivity Could Expedite MAb Development

- Many well-validated preclinical animal models
- Most mouse-derived MAbs reactive only in primates
  - Testing limited to non-human primates (NHP)
  - NHP experiments resource intensive
  - NHPs in short supply
  - NHP testing not actually required
- Ability to test MAbs in lower mammals could greatly streamline studies




#### Mammalian species used in animal models

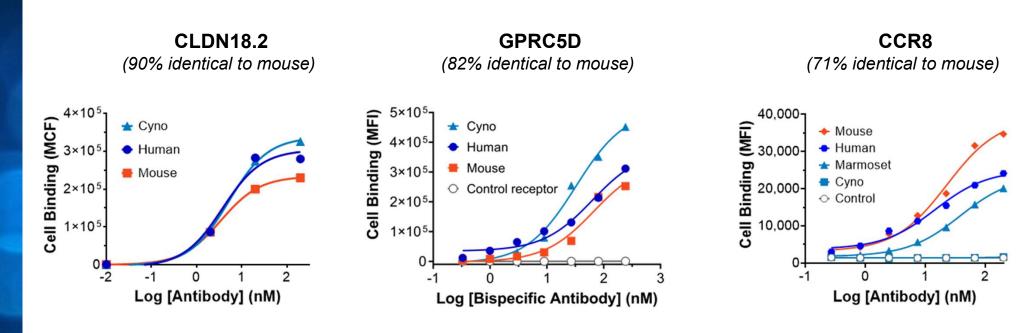
\*in Nobel prize work (physiology/medicine) Adapted from (Jota Baptista et al., 2021, Pharmacology)

## 3. Cross Species-Reactivity Could Expedite MAb Development

- Many well-validated preclinical animal models
- Most mouse-derived MAbs reactive only in primates
  - Testing limited to non-human primates (NHP)
  - NHP experiments resource intensive
  - NHPs in short supply
  - NHP testing not actually required
- Ability to test MAbs in lower mammals could greatly streamline studies



#### Mammalian species used in animal models


\*in Nobel prize work (physiology/medicine) Adapted from (Jota Baptista et al., 2021, Pharmacology)

## Cross Species-Reactive MAbs From Divergent Species

|                                         | Clinical Stage  | Immunization host | % Identity vs host | % Identity vs<br>mouse | Reactivity in non-primates |  |
|-----------------------------------------|-----------------|-------------------|--------------------|------------------------|----------------------------|--|
| Caplacizumab<br>(von Willebrand factor) | Approved        | Camelid           | 81                 | 83                     | Guinea pig, mini-pig, pig, |  |
| <b>Brolucizumab</b> (VEGF-A)            | Approved        | Rabbit            | 88                 | 84                     | Rat, mouse, dog, pig, cat  |  |
| Eptinezumab<br>(CGRP)                   | Approved        | Rabbit            | 89                 | 89                     | Rat, rabbit                |  |
| <b>Sym021</b> (PD1)                     | Clinical trials | Chicken           | 35                 | 59                     | Mouse                      |  |
| CTIM-76<br>(Claudin 6)                  | Preclinical     | Chicken           | 61                 | 88                     | Mouse                      |  |
| <b>IM-68-27G10</b><br>(GPRC5D)          | Preclinical     | Chicken           | 49                 | 82                     | Mouse                      |  |
| B30<br>(BDNF)                           | Discovery       | Chicken           | 94                 | 100                    | Rat                        |  |
| <b>pT231/pS235_1</b><br>(Tau)           | Discovery       | Chicken           | 84                 | 90                     | Mouse                      |  |
| <b>AC1</b> (CD20)                       | Discovery       | Chicken           | No ortholog        | 75                     | Mouse                      |  |
| <b>YW33</b> (Integrin α11β1)            | Discovery       | Chicken           | 78/85              | 90/93                  | Mouse, rat                 |  |
| <b>MAb panel</b><br>(SIRPα)             | Discovery       | Chicken           | 42                 | 66                     | Mouse                      |  |
| MAb panel<br>(SLC2A4)                   | Discovery       | Chicken           | 65 (Paralog)       | 95                     | Mouse                      |  |
| MAb panel<br>(GIPR)                     | Discovery       | Chicken           | 50                 | 82                     | Mouse, rat                 |  |
| MAb panel<br>(Kv1.3)                    | Discovery       | Chicken           | 84                 | 96                     | Mouse                      |  |
| MAb panel<br>(Claudin18.2)              | Discovery       | Chicken           | 76                 | 90                     | Mouse                      |  |

Banik et al., 2023, mAbs

## Our Experience Generating Species Cross-Reactive MAbs



(Antibodies raised in chickens)



## How Divergent Species Can Access Conserved Targets



Gaps in antibody space & role of divergent species



Rabbits, Camelids, Chickens



Chicken immunization has delivered:

Antibodies against conserved targets
Agonist antibody
Exquisite specificity

#### Rabbit MAb Discovery

- Well-established role as immunological hosts
- Single VH (VH1) and VL (VK1) framework
  - Cloning, humanization, and engineering relatively straightforward
- MAb discovery technologies
  - B cell cloning
     (e.g. eptinezumab, crovalimab, clazakizumab)
  - Rabbit hybridomas (e.g. APX005M/sotigalimab)

|                                                       | Mouse      | Rabbit     |
|-------------------------------------------------------|------------|------------|
| Evolutionary distance from humans, years              | 91 million | 91 million |
| Animal host class                                     | mammalia   | mammalia   |
| Robust immune response against conserved proteins     | -          | -          |
| Cross-reactive MAbs for preclinical models            | -          | +/-        |
| Canonical IgG                                         | +          | +          |
| HCDR3 length (aa)                                     | 9.1±2.0    | 12.8±3.6   |
| Long paratope with average HCDR3 >14 aa               | -          | -          |
| Nanobodies from host                                  | -          | -          |
| Immunization costs and animal logistics               | \$         | \$         |
| Access to humanized animals                           | +          | -          |
| Diverse accessible B cell repertoire (spleen, marrow) | +          | +          |



## Rabbit MAbs

| INN             | Brand name | Other names                                                        | Most advanced phase                          | Target(s)               | Indications of clinical trials                                                                                                                                                                                        |
|-----------------|------------|--------------------------------------------------------------------|----------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C               | \          | AL D400                                                            | Annual in LIC and ELL                        | Calcitonin gene-related | Minneigra                                                                                                                                                                                                             |
| Eptinezumab     | Vyepti     |                                                                    | Approved in US and EU                        | peptide (CGRP)          | Migraine prevention                                                                                                                                                                                                   |
| Dualisainsunaah | Daa        | RTH258, ESBA1008,                                                  | Annual and in U.S. and E.U.                  | VECEA                   | Diabetic macular edema, neovascular age-related                                                                                                                                                                       |
| Brolucizumab    | Beovu      |                                                                    | Approved in US and EU                        | VEGF-A                  | macular degeneration                                                                                                                                                                                                  |
| Crovalimab      |            | SKY59, RG6107,<br>RO7112689                                        | Regulatory review in US, EU, China and Japan | Complement C5           | Sickle cell disease, atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria                                                                                                                          |
| Suvemcitug      |            | APX003, BD0801;<br>TK001, Sevacizumab<br>(not WHO assigned<br>INN) | Phase 3                                      | VEGF                    | Ovarian cancer, macular degeneration                                                                                                                                                                                  |
| Clazakizumab    |            | CSL300, ALD518;<br>BMS-945429                                      | Phase 3                                      | IL-6                    | Subjects with end stage kidney disease undergoing dialysis, COVID-19, acute GvHD, psoriatic arthritis; Crohn's disease, rheumatoid arthritis, oral mucositis, non-small cell lung cancer-related fatigue and cachexia |
|                 |            | 9MW0211                                                            | Phase 2/3                                    | VEGF                    | Macular degeneration                                                                                                                                                                                                  |
| Sotigalimab     |            | APX005M                                                            | Phase 2 (non-commercial sponsor)             | CD40                    | Ovarian cancer, melanoma, gastro-esophageal cancer, pancreatic cancer, solid tumors, non-small cell lung cancer, renal cancer                                                                                         |
|                 |            | LU AG09222,<br>ALD1910                                             | Phase 2                                      | PACAP-38                | Allergic rhinitis, migraine                                                                                                                                                                                           |
|                 |            | TRK-950                                                            | Phase 2 pending                              | CAPRIN-1                | Gastric cancer, solid tumors                                                                                                                                                                                          |
|                 |            | YYB101                                                             | Phase 1/2                                    | HGF                     | Colorectal cancer                                                                                                                                                                                                     |
|                 |            | ASKB589                                                            | Phase 1/2                                    | Claudin 18.2            | Solid tumors                                                                                                                                                                                                          |
|                 |            | CLM-101, NOV-<br>110501, YYB-101                                   | Phase 1/2                                    | HGF                     | Colorectal cancer, solid tumors                                                                                                                                                                                       |
|                 |            | QX005N, SNC005                                                     | Phase 1                                      | IL-4R                   | Atopic dermatitis                                                                                                                                                                                                     |

## Camelid MAb Discovery

Canonical MAb



VHH nanobody



- Small heavy-chain only MAbs
  - Can be engineered into new formats (bispecifics)
  - Long HCDR3
- MAb discovery techniques
  - Phage display (caplacizumab, envafolimab, and ozoralizumab)
  - Yeast display
- Complex logistics due to large host animals

|                                                       | Mouse      | Camelid    |
|-------------------------------------------------------|------------|------------|
| Evolutionary distance from humans, years              | 91 million | 92 million |
| Animal host class                                     | mammalia   | mammalia   |
| Robust immune response against conserved proteins     | -          | -          |
| Cross-reactive MAbs for preclinical models            | -          | +/-        |
| Canonical IgG                                         | +          | +          |
| HCDR3 length (aa)                                     | 9.1±2.0    | 14.5±3.7   |
| Long paratope with average HCDR3 >14 aa               | -          | +          |
| Nanobodies from host                                  | -          | +          |
| Immunization costs and animal logistics               | \$         | \$\$\$     |
| Access to humanized animals                           | +          | -          |
| Diverse accessible B cell repertoire (spleen, marrow) | +          | <u>-</u>   |

## Camelid MAbs

| INN                                   | Brand name                   | Other names                                 | Most advanced phase                                     | Target(s)                   | Indications of clinical trials                                                                                                                                                                                                                          |                                                            |  |
|---------------------------------------|------------------------------|---------------------------------------------|---------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| Caplacizumab                          | Cablivi                      | ALX-0081 (IV),<br>ALX-0681                  | Approved in EU and US                                   | von Willebrand factor       | Acquired thrombotic thrombocytopenic purpura, unstable angina; non ST segment elevation myocardial infarction (NSTEMI); stable angina (associated with high risk PCI), thrombotic thrombocytopenic purpura                                              |                                                            |  |
| Ozoralizumab                          |                              | TS-152, ATN-103                             | <u>Approved</u> in Japan                                | TNF, albumin                | Rheumatoid arthritis HIV infection, metastatic or recurrent non-microsatellite highly unstable (non-MSI-H)/non-DNA mismatch repair defect (non-dMMR) endometrial cancer, undifferentiated pleomorphic sarcoma, hepatitis B, bile tract carcinoma, solid |                                                            |  |
| Envafolimab<br>Netakimab<br>Levilimab | ENWEIDA<br>Efleira<br>Ilsira | KN035, ASC22<br>BCD-085<br>BCD-089          | Approved in China Approved in Russia Approved in Russia | PD-L1<br>IL-17<br>IL-6R     | tumors  Ankylosing spondylitis, psorias  COVID-19, rheumatoid arthritis                                                                                                                                                                                 | is, psoriatic arthritis                                    |  |
| Gefurulimab                           | lisira                       | ALXN1720                                    | Phase 3                                                 | C5                          | Myasthenia gravis                                                                                                                                                                                                                                       |                                                            |  |
| Erfonrilimab                          |                              | KN046                                       | Phase 3                                                 | PD-L1/CTLA-4                | Multiple tumor types  Hepatocellular carcinoma, small cell lung cancer, non-small cell lung cancer,                                                                                                                                                     |                                                            |  |
|                                       |                              | PM8002                                      | Phase 2/3                                               | PD-L1, VEGF                 | solid tumors                                                                                                                                                                                                                                            |                                                            |  |
| Ozekibart                             |                              | LMN-201<br>JCT205, INBRX-<br>109            | Phase 2/3 pending Phase 2, pivotal                      | C. difficile exotoxin B DR5 | Clostridioides difficile infection  Chondrosarcoma, solid tumors including sarcomas                                                                                                                                                                     |                                                            |  |
| OZSINIDAI (                           |                              | BI 836880                                   | Phase 2                                                 | VEGF, Ang2                  | Head and neck cancer, liver cancer, anal canal squamous cell carcinoma, macular degeneration, non-small cell lung cancer, solid tumors                                                                                                                  |                                                            |  |
|                                       |                              | PM8001                                      | Phase 2                                                 | PD-L1, TGFβ                 | Cancer                                                                                                                                                                                                                                                  |                                                            |  |
|                                       |                              | M1095,<br>MSB0010841,                       |                                                         | i i                         |                                                                                                                                                                                                                                                         |                                                            |  |
| Sonelokimab                           |                              | ALX-0761                                    | Phase 2                                                 | IL-17A, IL17F, HSA          | Psoriatic arthritis, hidradenitis s                                                                                                                                                                                                                     | suppurativa, psoriasis                                     |  |
|                                       |                              | LMN-101                                     | Phase 2                                                 | FlaA                        | Campylobacter jejuni infection                                                                                                                                                                                                                          |                                                            |  |
| Livmoniplimab                         |                              | ABBV-151, ARGX-<br>115                      | Phase 2                                                 | GARP-TGFβ1 complex          | Solid tumors                                                                                                                                                                                                                                            |                                                            |  |
| Cusatuzumab                           |                              | ARGX-110, JNJ-<br>74494550                  | Phase 2                                                 | CD70                        | Cutaneous T-cell lymphoma, AML, hematological and solid cancers, Waldenström's macroglobulinemia                                                                                                                                                        |                                                            |  |
|                                       |                              | LEO 138559,<br>ARGX112, LP0145<br>SAR442970 | Phase 2<br>Phase 2                                      | IL-22R<br>TNF, OX40L        | Atopic dermatitis<br>Hidradenitis suppurativa                                                                                                                                                                                                           | + many more early stage ANTI BODY (Antibody Society, 2023) |  |
| Tarperprumig                          |                              | ALXN1820                                    | Phase 2                                                 | Properdin                   | Sickle cell disease                                                                                                                                                                                                                                     | (Antibody Society, 2023)                                   |  |

#### Chicken MAb Discovery

- Many conserved targets immunologically accessible
  - Only 15% of drug targets appear highly conserved (>90% identity)
- Canonical antibodies despite phylogenetic distance
- Skewed distribution of HCDR3s with longer sequences
  - ~90% with HCDR3 ≥13+ amino acids
- Easy to humanize, only 1 germline gene for heavy and light chain
- MAb discovery techniques:
  - Phage display (numerous preclinical examples)
  - B cell cloning (Sym021)
- First chicken MAb in clinic
  - Sym021, targeting PD-1 (Cyno and mouse cross reactive)



% Amino acid identity vs human

#### Chicken MAb Discovery

- Many conserved targets immunologically accessible
  - Only 15% of drug targets appear highly conserved (>90% identity)
- Canonical antibodies despite phylogenetic distance
- Skewed distribution of HCDR3s with longer sequences
  - ~90% with HCDR3 ≥13+ amino acids
- Easy to humanize, only 1 germline gene for heavy and light chain
- MAb discovery techniques:
  - Phage display (numerous preclinical examples)
  - B cell cloning (Sym021)
- First chicken MAb in clinic
  - Sym021, targeting PD-1
     (Cyno and mouse cross reactive)

|                                                       | Mouse      | Chicken     |  |
|-------------------------------------------------------|------------|-------------|--|
|                                                       | Wouse      | Offickeri   |  |
| Evolutionary distance from humans, years              | 91 million | 310 million |  |
| Animal host class                                     | mammalia   | aves        |  |
| Robust immune response against conserved proteins     | -          | +           |  |
| Cross-reactive MAbs for preclinical models            | -          | +           |  |
| Canonical IgG                                         | +          | +           |  |
| HCDR3 length (aa)                                     | 9.1±2.0    | 15.9±2.8    |  |
| Long paratope with average HCDR3 >14 aa               | -          | +           |  |
| Nanobodies from host                                  | -          | -           |  |
| Immunization costs and animal logistics               | \$         | \$          |  |
| Access to humanized animals                           | +          | +           |  |
| Diverse accessible B cell repertoire (spleen, marrow) | +          | +           |  |

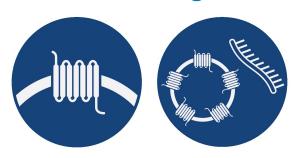
## How Divergent Species Can Access Conserved Targets



Gaps in antibody space & role of divergent species



Rabbits, Camelids, Chickens




**Chicken immunization has delivered:** 

Antibodies against conserved targets
Agonist antibody
Exquisite specificity

#### Chickens Are Integral to Our Platform

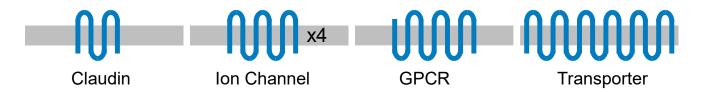
#### **Native Antigen**



- Pioneers in DNA & mRNA immunization for MAb discovery
- Inventors of Lipoparticle technology
- 20+ years membrane protein expertise

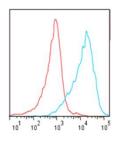
#### **Chicken MAb Discovery**

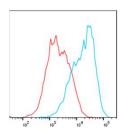


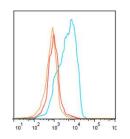

- Access conserved & difficult epitopes
- Diverse antibody candidate panels
- Humanized, pM affinity, developable

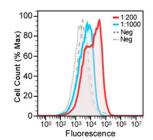
#### **Preclinical Leads**




- · Bispecific/therapeutic format
- Functional POC in vitro & in vivo
- Deliverable: 12-18 months to IND


#### High-Titer Responses to Conserved Targets



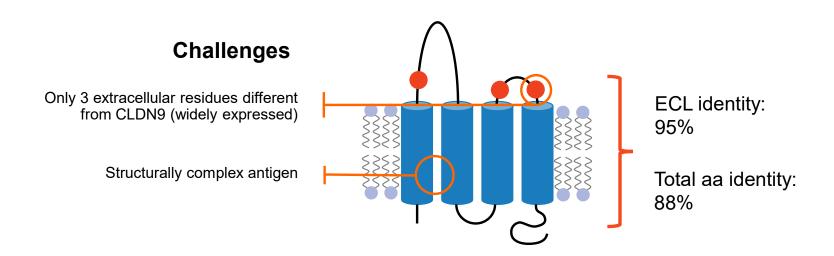


|                    | CLDN6 | Kv1.3 | CB1 | SLC2A4       |
|--------------------|-------|-------|-----|--------------|
| % Mouse identity   | 88    | 96    | 97  | 95           |
| % Chicken identity | 61    | 84    | 94  | 65 (paralog) |

Serum titer










Chickens deliver diverse MAbs against wide range of targets, with **95% success** 

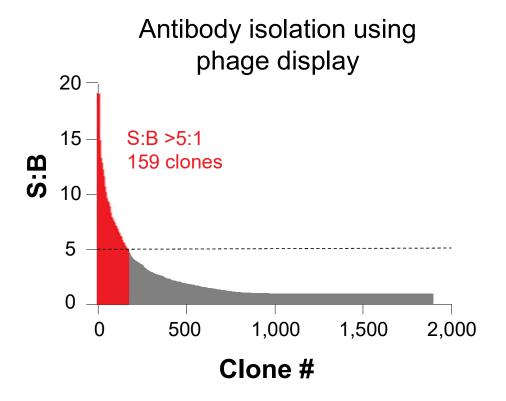


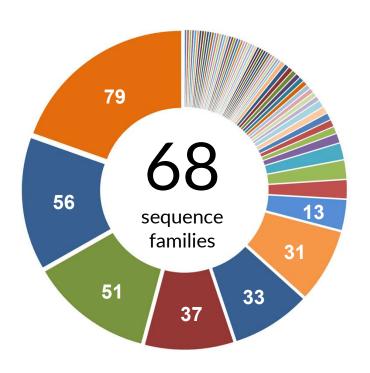


#### Claudin 6 Program for Oncology – Enabled by Chickens



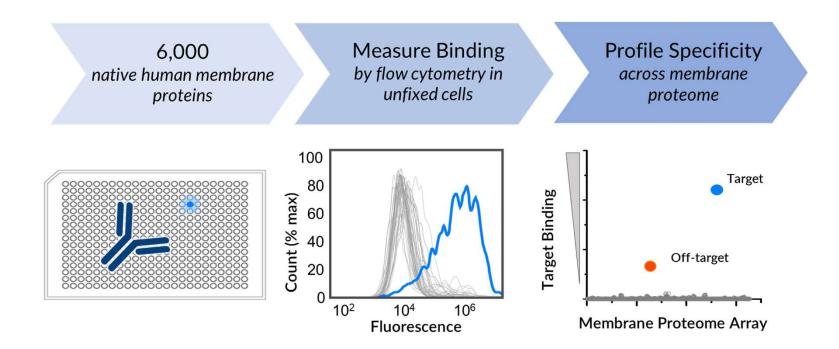
#### **Therapeutic Potential**


- Expressed in ovarian, NSC lung, teratomas, gastric tumors
- Not expressed in normal adult tissues


#### **Current Status**

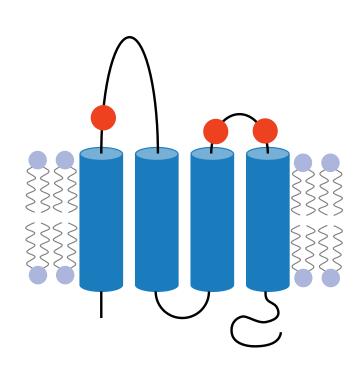
- Configured as a bispecific
- Potent antitumor effects in animals, and good developability
- IND filed, entering clinical trials mid-2024

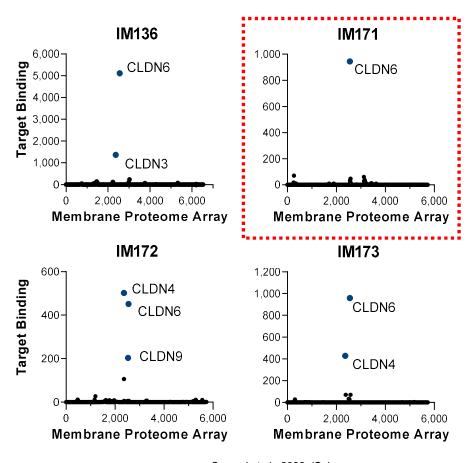



## Antibody Diversity From Chicken Immunization



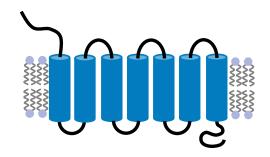




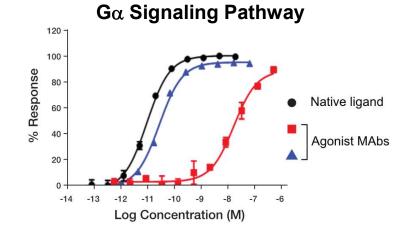


## CLND6 MAb Discovery: A Search for Specificity



- MPA encompasses human membrane proteome including 24 claudin family members
- Specificity profiling tool under review by FDA, for qualification as a Drug Development Tool


## CLND6 MAb Discovery: A Search for Specificity





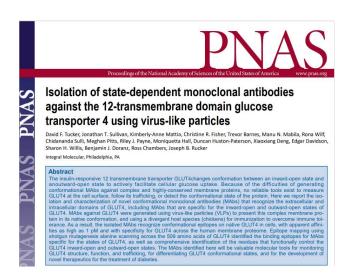


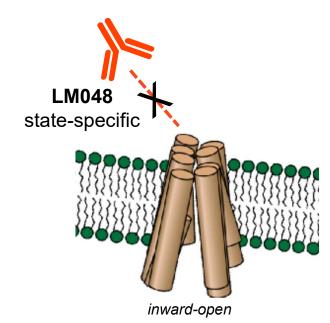

## GPCR Agonist MAb Enabled by Chickens

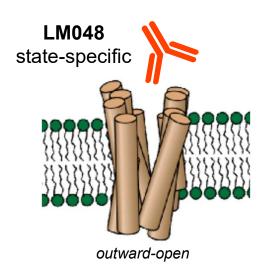


- Therapeutic antibody discovery project completed for Merck
- Merck sought an agonist antibody




- ✓ Human
- ✓ Non-human primate
- ✓ Mouse
- ✓ Rat
- ✓ Dog


The unique CDR diversity generated in chickens provided an interaction capable of activating a GPCR that no other rodent or human phage display derived antibodies could do even to the same epitope region.

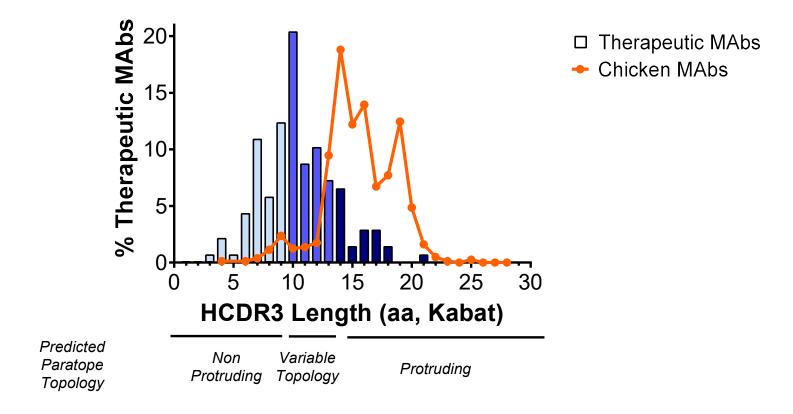

-Director of Antibody Discovery, Merck



## SLC2A4 MAb: Unique Activity and Long HCDR3

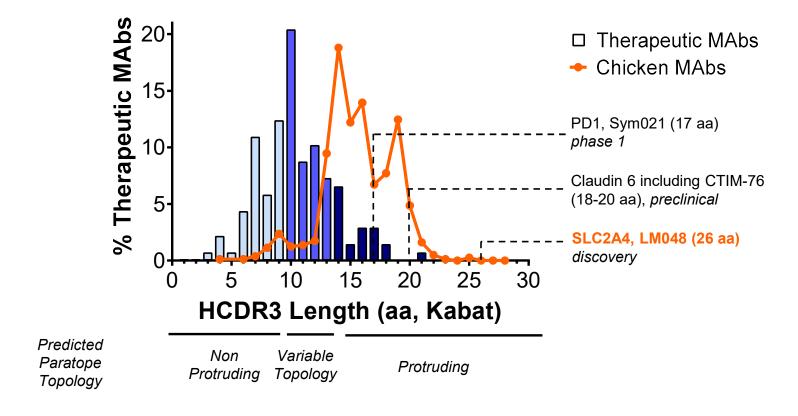







#### SLC2A4 State-Specific MAb (LM048)

- 26 aa HCDR3
- Binds in cavity formed by ECL4 and ECL6
- Rare property of binding state-specific conformation




## Chicken MAbs Have Long HCDR3





## Chicken MAbs Have Long HCDR3



integral

## Integral Molecular: Preclinical Pipeline of Chicken-Derived MAbs

| Target      | Indication       | Modality    | Discovery | Preclinical | Phase 1 | Partner       |
|-------------|------------------|-------------|-----------|-------------|---------|---------------|
| CLDN6       | solid tumors     | TCE         |           |             |         | context       |
| Undisclosed | oncology         | undisclosed |           |             |         | AstraZeneca 🕏 |
| CLDN18.2    | solid tumors     | CAR-T       |           |             |         | CARTEXELL     |
| CLDN18.2    | solid tumors     | ADC         |           |             |         | Undisclosed   |
| CLDN18.2    | solid tumors     | mRNA TCE    |           |             |         |               |
| GPRC5D      | multiple myeloma | TCE         |           |             |         |               |
| CCR8        | solid tumors     | ADC         |           |             |         |               |
| KV1.3       | autoimmune       | multiple    |           |             |         |               |

TCE: T- cell engager (multi-specific antibody)

ADC: Antibody-drug conjugate

CAR-T: Chimeric antigen receptor T cell

Partnered
Internal (available)



## Divergent Species Enable MAb Discovery



- Many valuable drug targets unfeasible in mice due to conservation
- Divergent species are increasingly used



## Divergent Species Enable MAb Discovery



- Many valuable drug targets unfeasible in mice due to conservation
- Divergent species are increasingly used

#### Evolutionarily divergent species provide:



- Robust immune response with broad epitope coverage
- Long HCDR3 regions can access functional pockets
- · Access to more animal models because of species cross reactivity
- See Banik et al., 2023, mAbs



## Divergent Species Enable MAb Discovery



- Many valuable drug targets unfeasible in mice due to conservation
- · Divergent species are increasingly used

#### Evolutionarily divergent species enable



- Robust immune response with broad epitope coverage
- Long HCDR3 regions can access functional pockets
- Access to more animal models because of species cross reactivity
- See Banik et al., 2023, mAbs



#### Chicken MAbs have demonstrated

- Exquisite epitope specificity
- Agonist & state specific activity



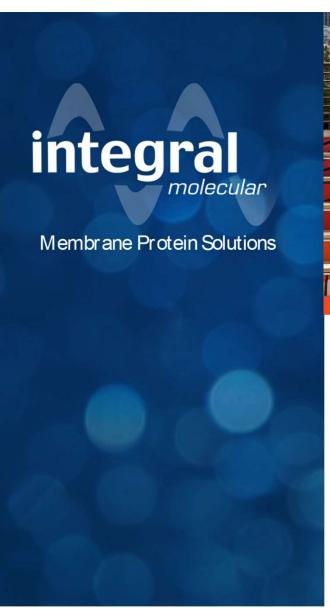
## Access Our Antibodies & Technologies



#### **Work With Integral Molecular**

- Specificity Screening, Lipoparticles, Epitope Mapping (fee-for-service)
- Antibody discovery (partnerships)
- Therapeutic antibodies (licenses)




cellsurfacebio.com

#### **VeRSaMAb Antibodies From Cell Surface Bio**

 <u>V</u>alidated <u>R</u>ecombinant antibodies with unparalleled Specificity









#### **THANK YOU**

Ross Chambers, PhD VP of Antibody Discovery rchambers@integralmolecular.com

www.integralmolecular.com