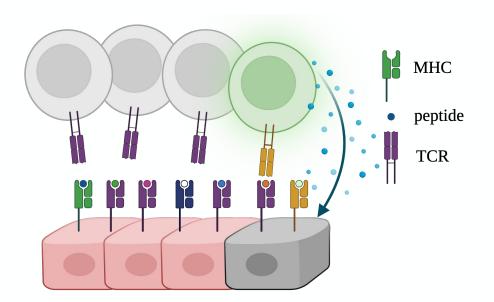
Machine learning models for TCR-epitope prediction

T-cell receptors recognize unique molecular surface structures



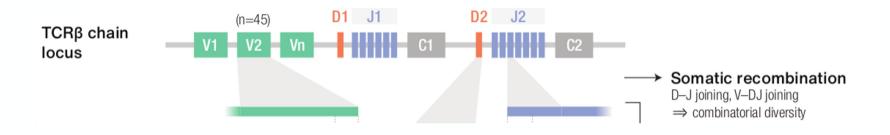
- Adaptive immune system
- Recognise diverse antigens
 - Peptides
 - Lipids
 - Small molecules

TCR recombination gives rise to highly diverse and unique repertiores

For each T-cell, a unique receptor is quasi-randomly generated during a process called V(D)J recombination

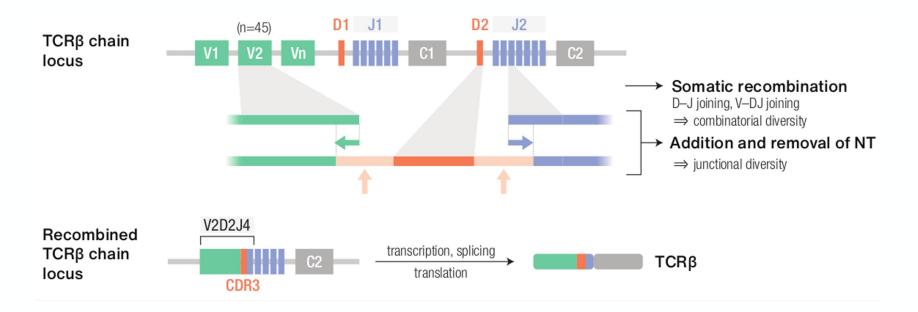
TCR recombination gives rise to highly diverse and unique repertiores

For each T-cell, a unique receptor is quasi-randomly generated during a process called V(D)J recombination



TCR recombination gives rise to highly diverse and unique repertiores

For each T-cell, a unique receptor is quasi-randomly generated during a process called V(D)J recombination



Necessity of studying the TCR repertoire

The TCR repertoire captures a fingerprint of:

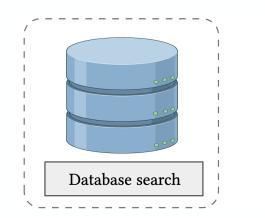
- Current immune responses
- Past immune exposures
- Future protection and infection outcomes

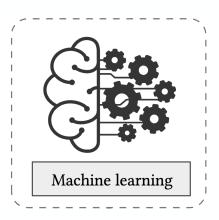
Current challenges of understanding the TCR repertoire

- Many TCR-epitope interaction are unknown
- Not experimentally feasible to test all interaction
- Prediction modelling of the TCR-epitope interactions
 - Necessary to identify which TCR-epitope combinations to experimentally validate

Overview

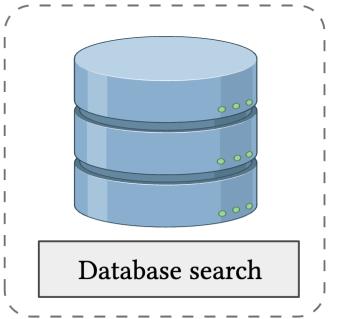
- Data driven prediction method for annotating TCR repertoire
 - Databases
 - Machine learning
 - Extending the prediction with scRNA-seq with TCR-seq





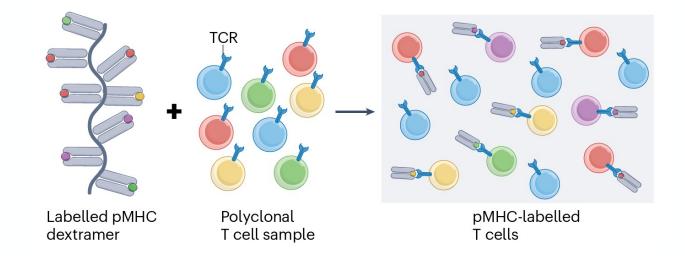
Overview

- Data driven prediction method for annotating TCR repertoire
 - Databases
 - o Machine learning
 - Extending the prediction with



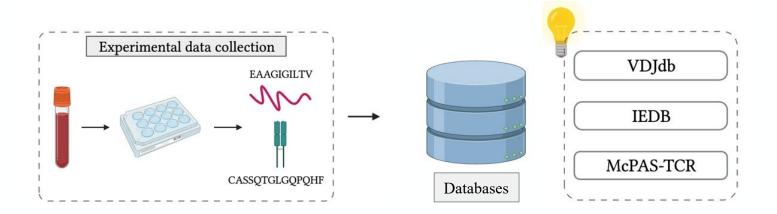
T-cell antigen discovery

Antigen-directed experimental methods for readout of TCR-pMHC interactions

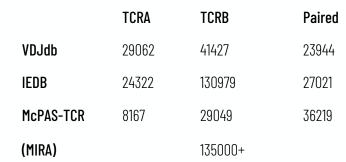


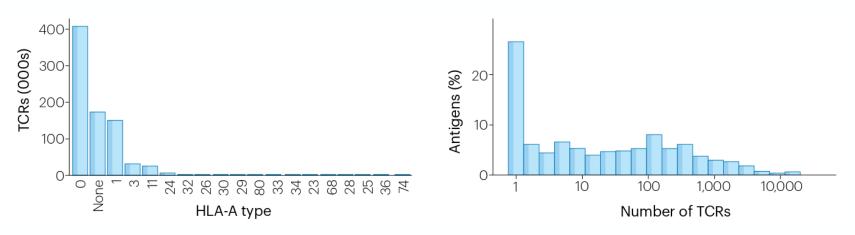
10

TCR-epitope pairs are compiled in curated databases



The current landscape of known TCR-epitope pairs

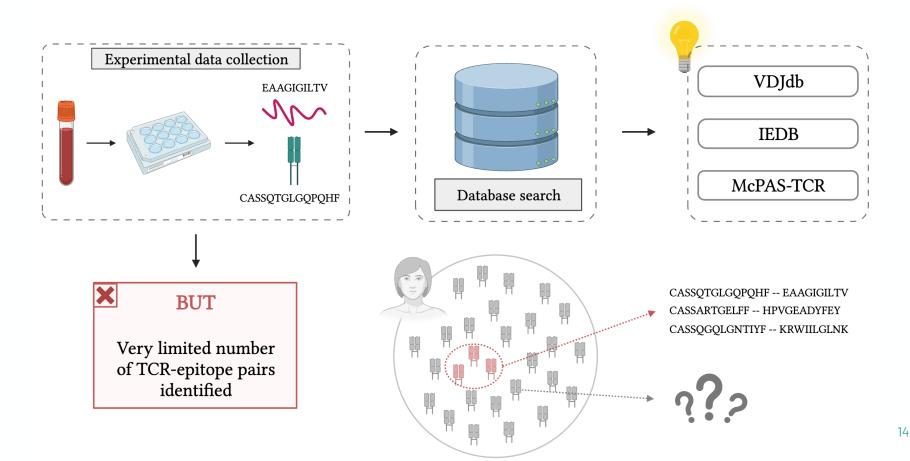




12

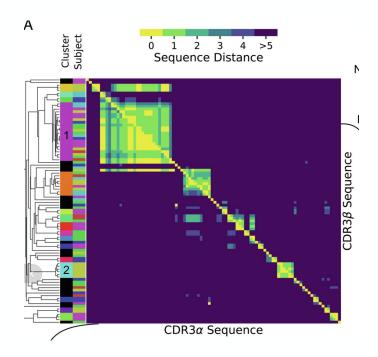
١	/DJdb Hom	e COVID-19	Overview	Browse	Annotation	Motif	About	Links	Credits	Logged	i as: dc1rcMvPXEd2PnZ2 🝷
Sample F3_II Software: VDJto	MSEQ022_inc_N	1710_\$508_\$6	8_clones								
Gene	ral	Scoring									
		DAT	ABASE QUE	RY PARAN	METERS						SEARCH SCOPE
Species	HomoSapiens		•	Confi	dence score thr	reshold	0		\$	Segment match rule	Match V Match J
Gene	TRB		•		Minimal epito	ope size	10		\$	Edit distance	Substitutions
МНС	MHCI+II		•								
Annotate											

Exact annotations are sparse



Distance-based TCR analysis

Similar TCR sequences often recognize the same epitope



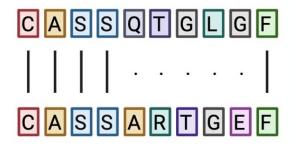
Similar TCR sequences often recognize the same epitope => approximate database matching

Two main approaches:

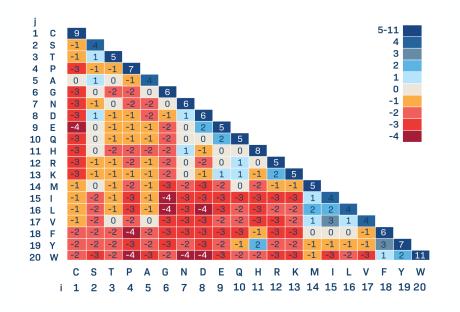
- Matching based on distance threshold (e.g. TCRMatch)
- Clustering-based (e.g. ClusTCR, GLIPH2)

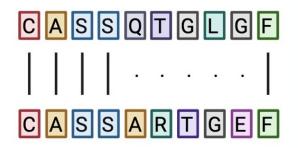
One requirement: **distance metric** "How do we define TCR similarity?"

- Hamming distance (e.g. ClusTCR)
- Edit distance (LD) (e.g. VDJdb search)

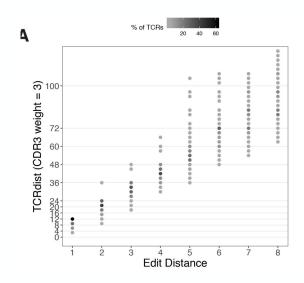


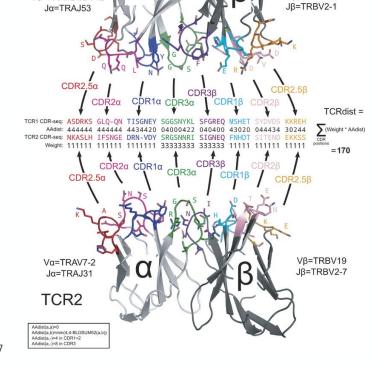
- Hamming distance (e.g. ClusTCR)
- Edit distance (LD) (e.g. VDJdb search)
- Alignment+BLOSUM approaches (e.g. TCRdist)





- Hamming distance (e.g. ClusTCR)
- Edit distance (e.g. VDJdb search)
- Alignment+BLOSUM approaches (e.g. TCRdist)





V_β=TRBV29

TCR1

Va=TRAV21/DV12

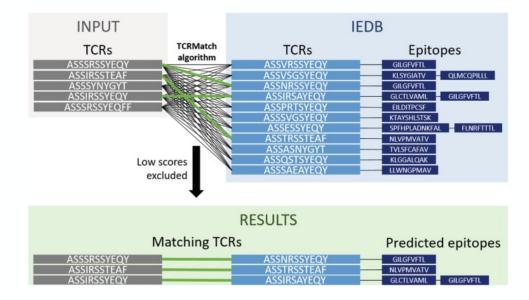
Mayer-Blackwell et al. 2021, Dash et al. 2017

- Hamming distance (e.g. ClusTCR)
- Edit distance (LD)
- Alignment+BLOSUM approaches (e.g. TCRdist)
- K-mer approaches (e.g. GLIPH2, TCRMatch)

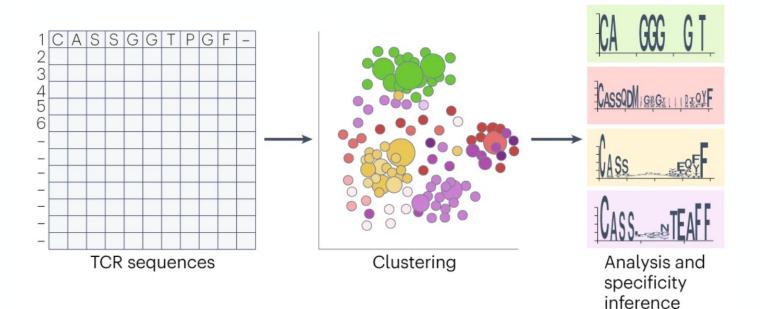
CASSLGTGELFF
$$\xrightarrow{k=3}$$
 { CAS, ASS, SSL, SLG, LGT,
GTG, TGE, GEL, ELF, LFF }
 $(k=3)$ { CAS, ASS, SSL, SLG, LGS,
GSI, SIG, IGE, GEL, ELF, LFF

}

Approach 1: distance-based annotation



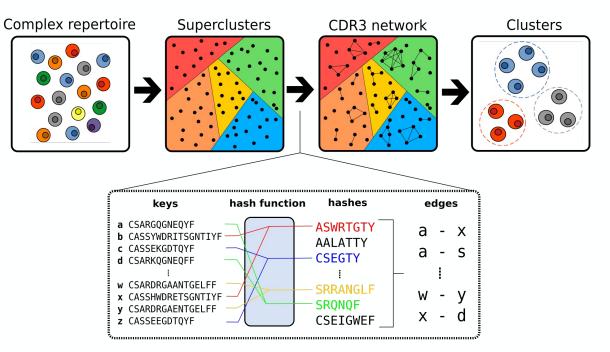
Approach 2: clustering-based annotation



22

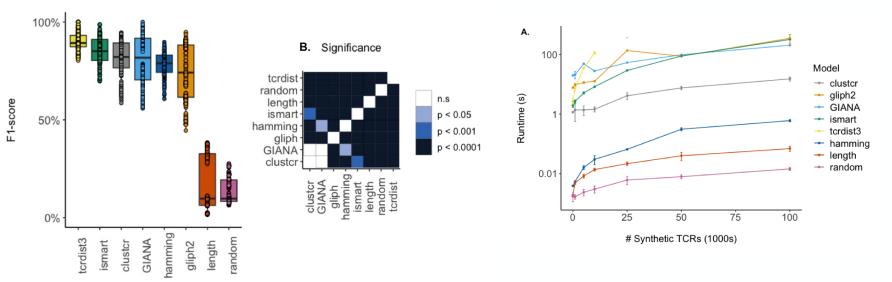
Approach 2: clustering-based annotation

- Example: ClusTCR



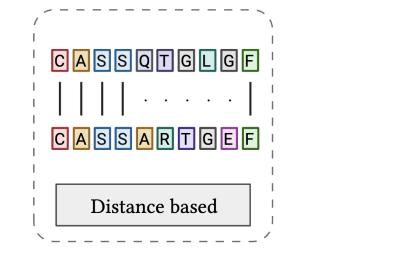
Which clustering approach to use?

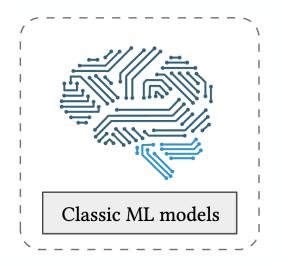
A. Performance: All chains



24

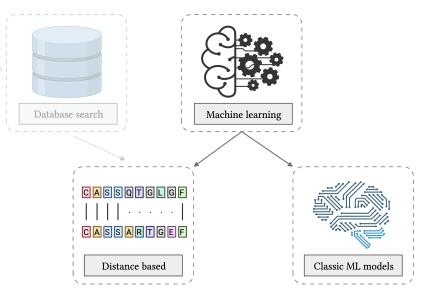
Why use machine learning models?





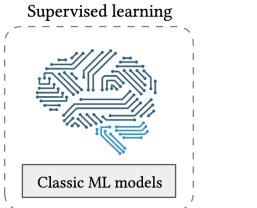
Overview

- Data driven prediction method for annotating TCR repertoire
 - o Databases
 - Machine learning
 - Extending the prediction \

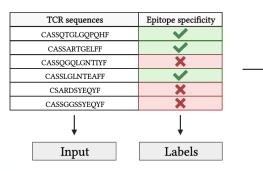


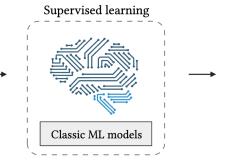
- Mechanism:
 - Discover common patterns in the sequences
 - LEARN which features are important
 - Predict binding for unseen sequences

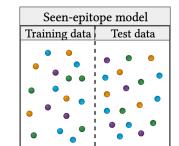
TCF	R sequences	Epitope specificity	1
CASS	QTGLGQPQHF	\checkmark	I
CAS	SARTGELFF	\checkmark	
CASS	QGQLGNTIYF	×	
CASS	SLGLNTEAFF	\checkmark	
CSA	ARDSYEQYF	×	
CASS	SGGSSYEQYF	×	
	Ļ	Ļ	
	Input	Labels	```

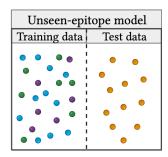


- Examples:
- DiffRBM
- ImRex
- NetTCR
- SONIA
- TCR-BERT
- TCRex
- TITAN

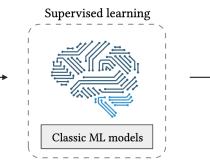


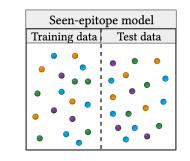


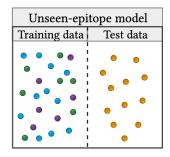




TCR sequences	Epitope specificity
CASSQTGLGQPQHF	
CASSARTGELFF	~
CASSQGQLGNTIYF	×
CASSLGLNTEAFF	~
CSARDSYEQYF	×
CASSGGSSYEQYF	×
Ļ	\downarrow
Input	Labels



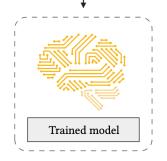


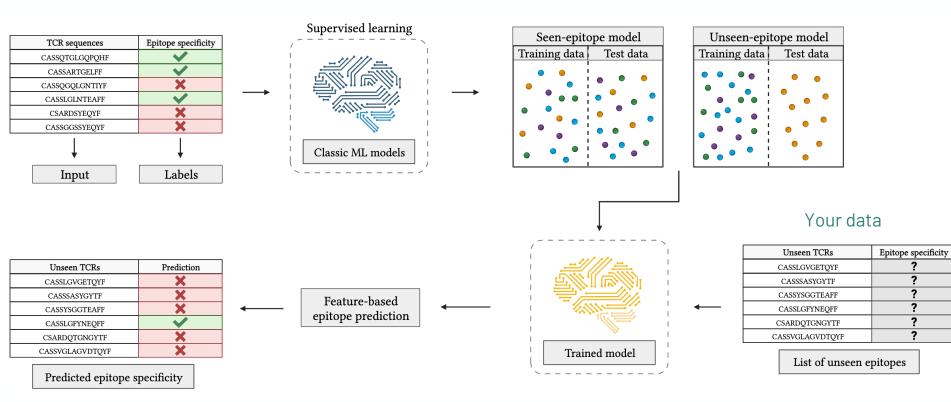


Your data

Unseen TCRs	Epitope specificity
Uliseen TCKs	Epitope specificity
CASSLGVGETQYF	?
CASSSASYGYTF	?
CASSYSGGTEAFF	?
CASSLGFYNEQFF	?
CSARDQTGNGYTF	?
CASSVGLAGVDTQYF	?

List of unseen epitopes





Benchmarking public TCR-epitope prediction

• IMMREP22 workshop:

- Public TCR-epitope prediction benchmark
- Evaluate current tools & evaluation strategies
- In total 23 different models:
 - Most are feature-based models
 - Some are distance-based models

ImmunoInformatics 9 (2023) 100024

Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report

Pieter Meysman^{a,b,*}, Justin Barton^{c,1}, Barbara Bravi^{d,1}, Liel Cohen-Lavi^{e,f,1}, Vadim Karnaukhov^{h,i,1}, Elias Lilleskov^{J,1}, Alessandro Montemurro^{k,1}, Morten Nielsen^{k,1}, Thierry Mora^{i,1}, Paul Pereira^{i,1,1}, Anna Postovskaya^{a,b,m,1}, María Rodríguez Martínez^{n,1}, Jorge Fernandez-de-Cossio-Diaz^{i,1}, Alexandra Vujkovic^{a,b,m,1}, Aleksandra M. Walczak^{i,1}, Anna Weber^{n,1}, Rose Yin^{0,1}, Anne Eugster^{g,2,**}, Virag Sharma^{p,2,**}

Benchmarking public TCR-epitope prediction

• IMMREP22 workshop:

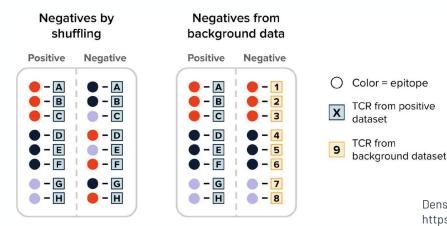
- Public TCR-epitope prediction benchmark
- Evaluate current tools & evaluation strategies
- In total 23 different models:
 - Most are feature-based models
 - Some are distance-based models
- Only paired data was collected
- Provided **positive** and **negative** data
 - Positive data = known TCR-epitope pairs
 - Negative data = random sampling & negative control set
 - Training Test : 80/20 ratio
- Compare all tools

Epitope	# Training samples
LTDEMIAQY	200
GILGFVFTL	1088
TTDPSFLGRY	386
NQKLIANQF	112
HPVTKYIM	96
GPRLGVRAT	80
KSKRTPMGF	170
CINGVCWTV	366
TPRVTGGGAM	90
SPRWYFYYL	184
LLWNGPMAV	376
GLCTLVAML	292
YLQPRTFLL	534
ATDALMTGF	208
NLVPMVATV	548
RAQAPPPSW	72
NYNYLYRLF	88

The pitfalls of negative data bias

• Negative data

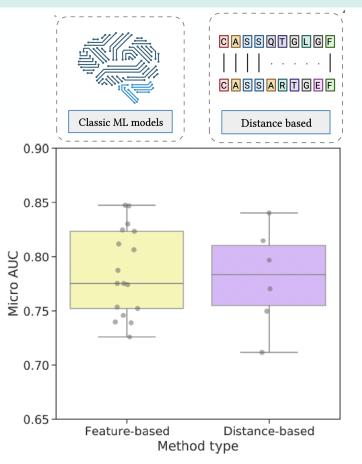
- There is no 'ground-truth' due to lack in high-quality negative data
- Artificially generate the negative data:
 - Shuffling of positive data
 - Use background TCR data set
- Model might learn to differentiate based on bias instead of TCR features



Dens et al., 2023 33 https://doi.org/10.1038/s42256-023-00727-0

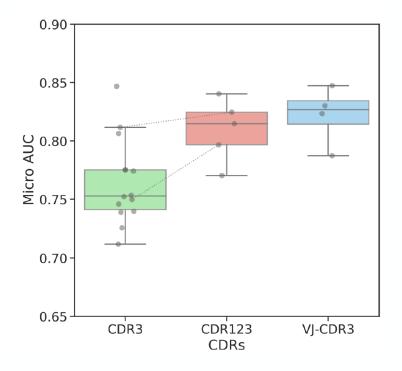
Insights into TCR-epitope prediction

- General conclusions:
- Predictions work better for TCRs similar to the training data
- > The 'simpler' distance-based models also perform very well



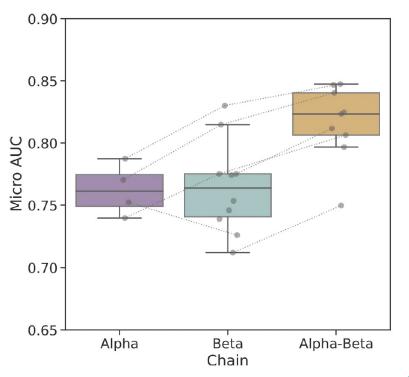
Insights into TCR-epitope prediction

- General conclusions:
- Predictions work better for TCRs similar to the training data
- > The 'simpler' distance-based models also perform very well
- Prediction is better when also including the V- and J-genes



Insights into TCR-epitope prediction

- General conclusions:
- Predictions work better for TCRs similar to the training data
- > The 'simpler' distance-based models also perform very well
- Prediction is better when also including the V- and J-genes
- Prediction is better when using both alpha and beta chains



Stay tuned!

-	

JUSTIN BARTON \cdot COMMUNITY PREDICTION COMPETITION \cdot 5 days to go

IMMREP23: TCR Specificity Prediction Challenge

Competitors will make predictions on previously unpublished TCR-epitope binding data in order to benchmark prediction methods.

Overview Data Code Models Discussion Leaderboard Rules

Overview

Description

IMMREP23, the second annual IMMREP benchmark on TCR-epitope specificity prediction will run from November 1, 2023 to December 11, 2023. Together with several experimental groups, we have compiled a data set of paired TCR data with annotated specificity to 21 pHLA (covering 6 distinct HLA molecules).

This challenge models TCR epitope recognition as a binary classification task. For a given test set of TCR-epitope pairs, the task of the model is to identify which pairs will bind and which will not bind.

...

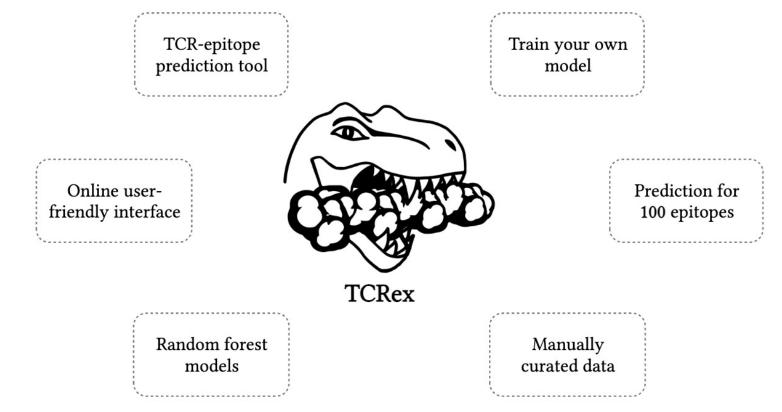
Prizes & Awards Kudos Does not award Points or Medals

Participation

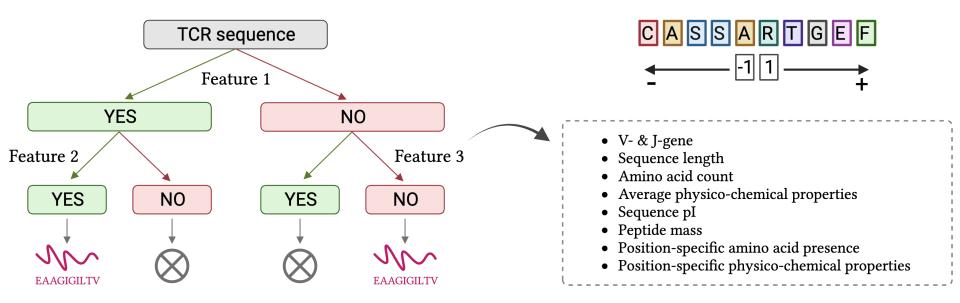
42 Competitors 42 Teams 262 Entries

G ^

What is TCRex?

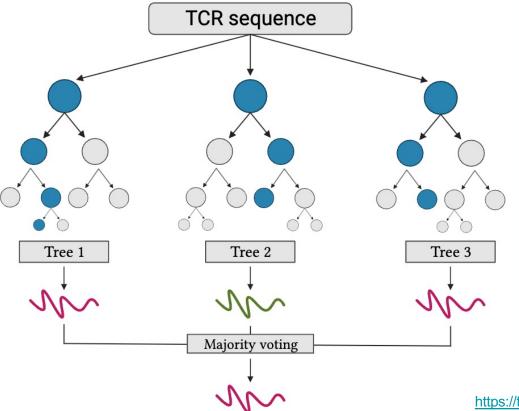


The secret behind TCRex



The secret behind TCRex

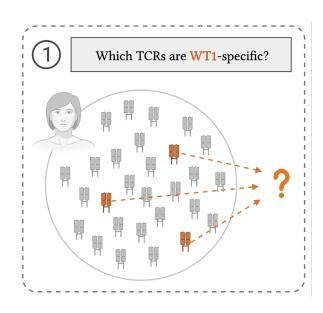
TCRex



https://tcrex.biodatamining.be 40

A variety of epitopes in TCRex

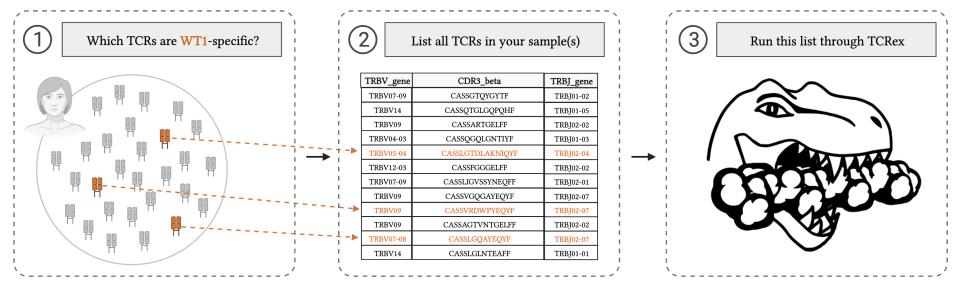
- Random forest models for 100 epitopes
 - 93 viral epitope •
 - 7 cancer epitopes (including WT1 epitopes) ۲



	Viral			Cancer	
	CMV			Melanoma	
□ IPSINVHHY			AMFWSVPTV		
QYDPVAALF	□ TPRVTGGGAM				
YSEHPTFTSQY	TERVICEOAM			Multiple Myelom	а
- TSEIFTI TSQT					
	DENV1		□ T	umor associated antige	en (WT1)
			RMFPNAPYL		
	DENV2				
	DENV3/4				
	EBV				
EPLPQGQLTAY		□ HPVGEADYFEY			
	HCV				
	ATDALMTGY			https:	//tcrex.bio
	- KI VALGINAV			mps.	

Identifying WT1-specific epitopes in melanoma

TCRex



Predict TCR-epitope binding

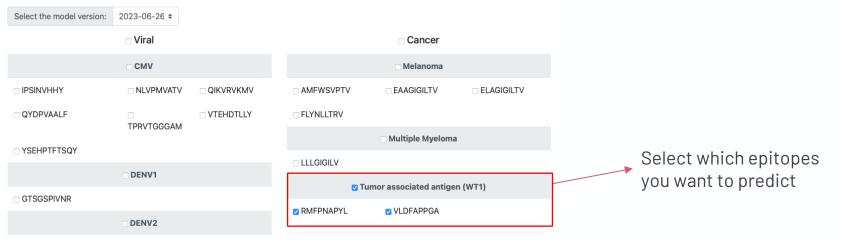
Select your TCR sequence data file: Choose File 📄 TCR_dataset.tsv

TCRex supports sequence data information in the TCRex format, the MiXCR format, and the immunoSEQ ANALYZER format (version 1 & 2).

Identifying WT1-specific epitopes in melanoma

Attention: TCRex only supports prediction files with at most 50 000 TCR sequences.

Select epitope(s)



Upload list of your TCRs

GTSGSPIIDK

Identifying WT1-specific epitopes in melanoma

Enrichment results

Be cautious when interpreting these enrichment results: they are valid for the used background dataset which might not provide the best background for your dataset.

Show 10 🗢 entries			Search:
Epitope 🔿	Pathology	∿ P value ↑↓	FDR-corrected P value 🛝
RMFPNAPYL	Tumor associated antigen (WT1)	4.32e-03	8.65e-03
VLDFAPPGA	Tumor associated antigen (WT1)	1.37e-01	1.37e-01
Showing 1 to 2 of 2 entr	ies		Previous 1 Next

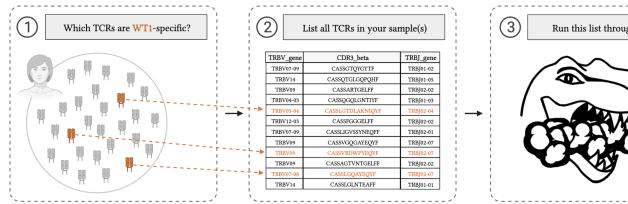
Prediction results

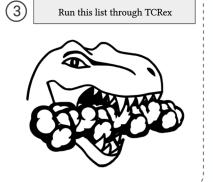
BPR threshold 0.01 @ %

BPR Infestiold	0.01 😌 🏸							
Show 10 ¢ entries Search:								
TRBV gene $\uparrow \!$	CDR3 sequence	\mathbb{N}	TRBJ gene $\uparrow \!\!\!\downarrow$	Epitope 🛝	Pathology	\mathbb{N}	Score 🛝	BPR (%) 🛝
TRBV05-04	CASSLGTDLAKNIQYF		TRBJ02-04	RMFPNAPYL	Tumor associated antiger	(WT1)	0.62	0.0000
TRBV04-01	CASSLLAGEQETQYF		TRBJ02-05	RMFPNAPYL	Tumor associated antiger	(WT1)	0.57	0.0010
TRBV19	CASSNLAGVRDTQYF		TRBJ02-03	RMFPNAPYL	Tumor associated antiger	(WT1)	0.57	0.0010
TRBV07-02	CASSWGGQGSDTQYF		TRBJ02-03	RMFPNAPYL	Tumor associated antiger	(WT1)	0.54	0.0030
TRBV09	CASSVLAGDQETQYF		TRBJ02-05	RMFPNAPYL	Tumor associated antiger	(WT1)	0.54	0.0030
TRBV30	CAWSRLAGGSDTQYF		TRBJ02-03	RMFPNAPYL	Tumor associated antiger	(WT1)	0.54	0.0030
TRBV05-04	CASSTLAGPQETQYF		TRBJ02-05	RMFPNAPYL	Tumor associated antiger	(WT1)	0.54	0.0030

Identifying WT1-specific epitopes in melanoma

TCRex

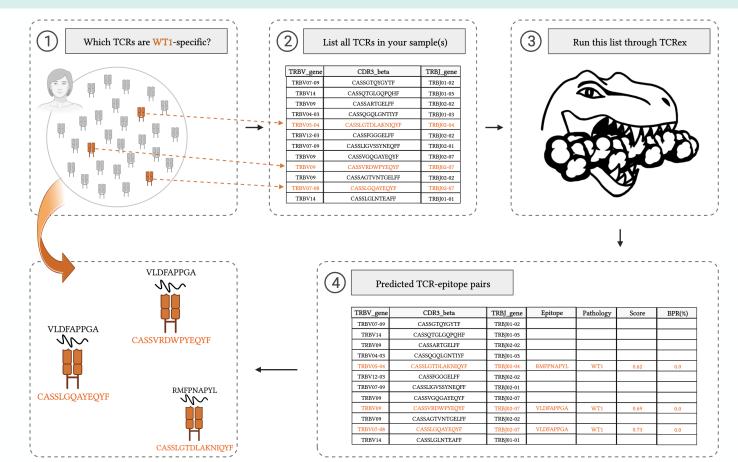




Pred	icted TCR-epitope pa	irs				
TRBV_gene	CDR3_beta	TRBJ_gene	Epitope	Pathology	Score	BPR(%)
TRBV07-09	CASSGTQYGYTF	TRBJ01-02				
TRBV14	CASSQTGLGQPQHF	TRBJ01-05				
TRBV09	CASSARTGELFF	TRBJ02-02				
TRBV04-03	CASSQGQLGNTIYF	TRBJ01-03				
TRBV05-04	CASSLGTDLAKNIQYF	TRBJ02-04	RMFPNAPYL	WT1	0.62	0.0
TRBV12-03	CASSFGGGELFF	TRBJ02-02				
TRBV07-09	CASSLIGVSSYNEQFF	TRBJ02-01				
TRBV09	CASSVGQGAYEQYF	TRBJ02-07				
TRBV09	CASSVRDWPYEQYF	TRBJ02-07	VLDFAPPGA	WT1	0.69	0.0
TRBV09	CASSAGTVNTGELFF	TRBJ02-02				
TRBV07-08	CASSLGQAYEQYF	TRBJ02-07	VLDFAPPGA	WT1	0.73	0.0
TRBV14	CASSLGLNTEAFF	TRBJ01-01				

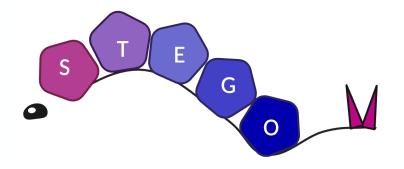
Gain additional insights using ML models

TCRex

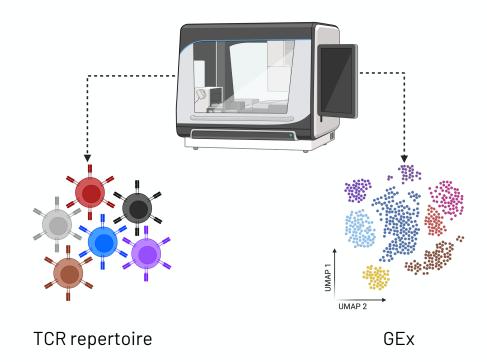


Overview

- Data driven prediction method for annotating TCR repertoire
 - o Databases
 - o Machine learning
 - Extending the prediction to scRNA-seq with TCR-seq

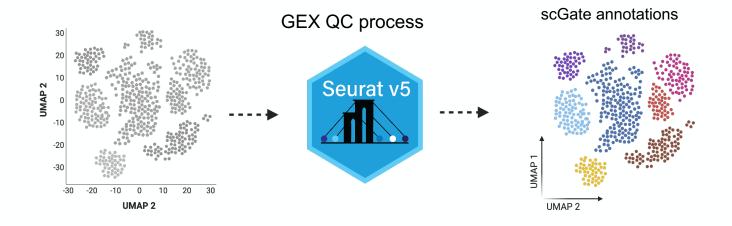


Functional annotating the predictions with single cell RNA-seq

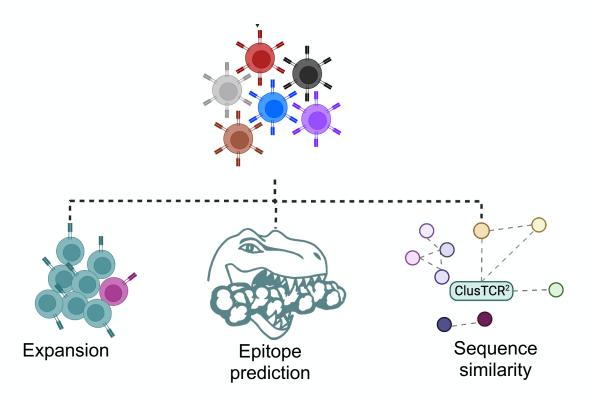


- scRNA-seq with TCR-seq
 - Paired clonotype
 - Expression layer as well

Pre-processing in STEGO.R (Shiny R package)



Pre-processing in STEGO.R (Shiny R package)

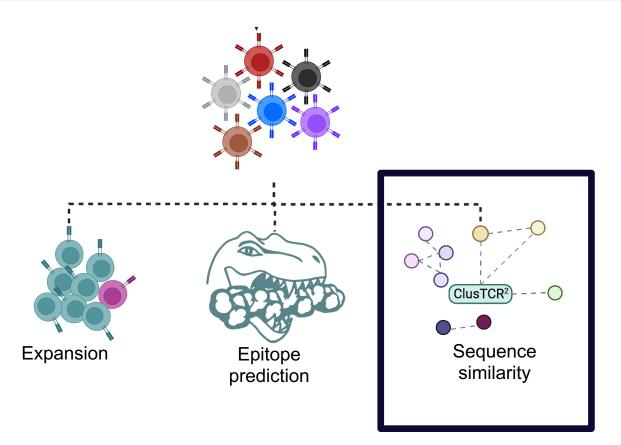


Example dataset

• Dataset: colitis complication to melanoma treatment (GSE144469)

- Colitis (melanoma)
- No colitis (melanoma)
- Healthy controls
- Extended analysis goals
 - \circ Clustering
 - WT1 predictions

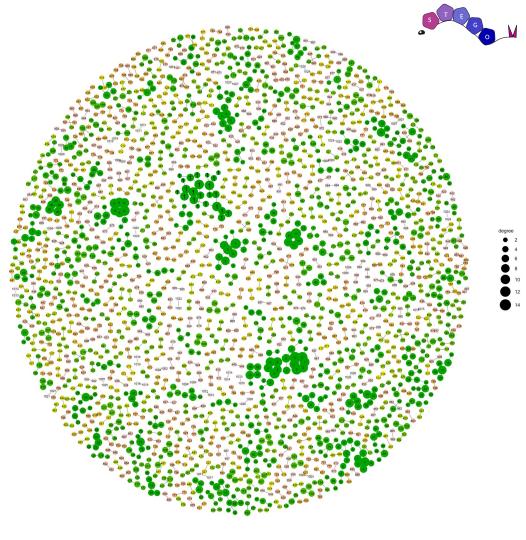
Pre-processing in STEGO.R (Shiny R package)



TCR-beta cluster

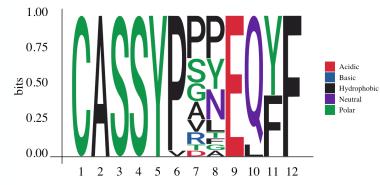
• Network 1029 clusters

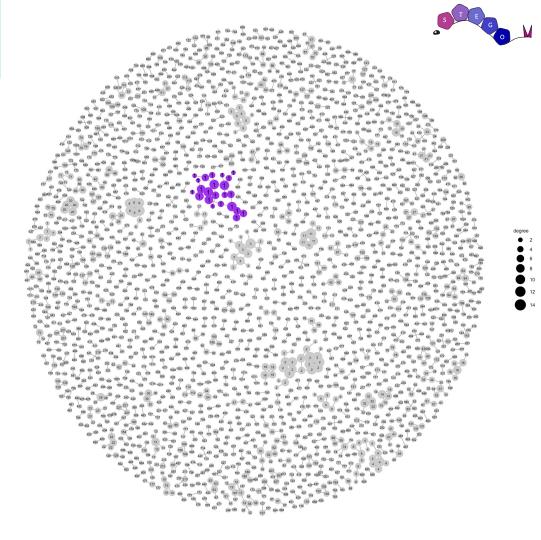
 \circ 2 or more connections



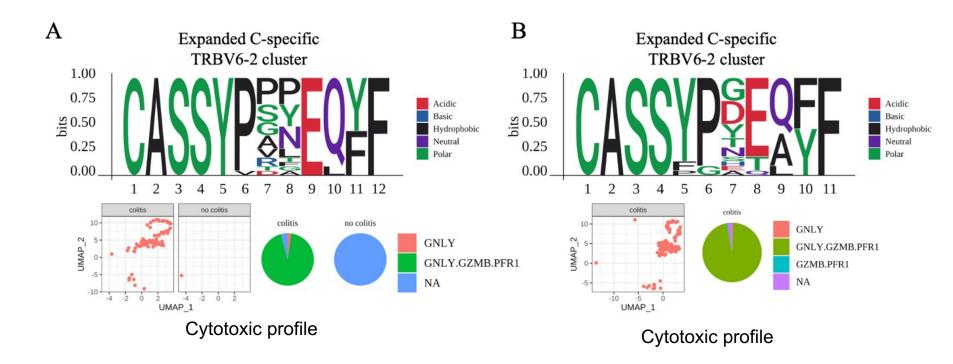
Top cluster

23 unique clones from the TRBV6-2



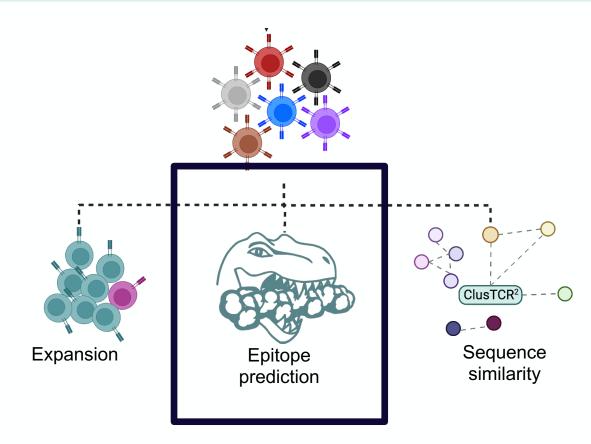


Hamming clustering identified colitis-specific TCR's

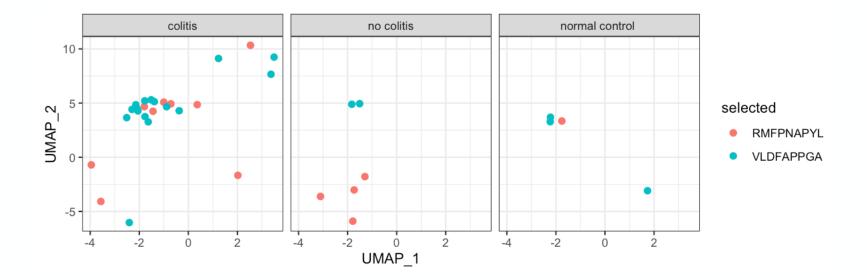


Mullan et al. bioRxiv (2023) doi: https://doi.org/10.1101/2023.09.27.559702

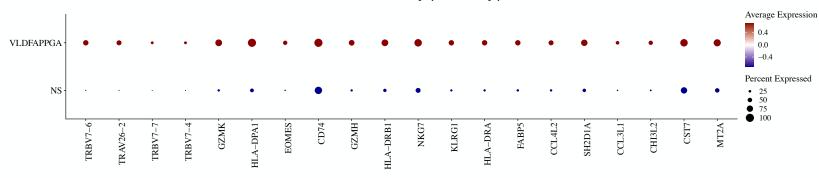
Pre-processing in STEGO.R (Shiny R package)



Predicted WT1-specific epitopes

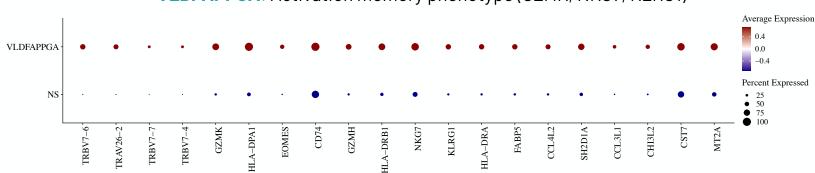


Possible WT1 epitope is associated with driving colitis ADR



VLDFAPPGA: Activation memory phenotype (GZMK, NKG7, KLRG1)

Possible WT1 epitope is associated with driving colitis ADR



VLDFAPPGA: Activation memory phenotype (GZMK, NKG7, KLRG1)

This was from an expanded cluster from the C5 colitis case (n=11)

TRAV26-2.TRAJ52_CILPLAGGTSYGKLTF & TRBV7-8.TRBJ2-7_CASSLGQAYEQYF

Focus on testing one peptide for this clone by HLA-A*02:01

Future directions

- Refining STEGO to include predicting the type of possible epitope
 Peptides, lipids or small molecules
- Prediction unseen epitopes while incredibly difficult holds great promise for actionable insights
- Additional experimental data needed for:
 - Covering more HLA's
 - Negative data for improving modelling
 - Validating the predictions

- Unannotated TCRs can be transparently matched to those in curated databases with simple TCR distance-based approaches.
- Machine learning tools allow us to use the limited data currently available to its fullest and identify additional TCR-epitope interactions that are otherwise impossible to find.
- Using either the distance or predictions with single cell GEX & TCR-seq can further narrow down which clones to experimentally validate.