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                                       - Ray Bradbury
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Machine learning for the analysis of 
adaptive immune receptors and repertoires

“Life is trying things to see if they work.”
                                 - AIRR researches

Or not?
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Adaptive immune receptors (AIRs) and repertoires (AIRRs)
❏ Adaptive immune receptors (AIRs) 
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❏ Adaptive immune repertoires (AIRRs) 



V(D)J recombination assembles AIRs (BCRs or TCRs)

6Alt et al. 1980, 1984, 1992, Bassing et al. 2000, 2002, Bareto et al. 2000, Schatz et al. 2012 



Overview of AIRR data on the receptor level
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TCR/BCR sequence TCR/BCR structure TCR/BCR function (binding)

❏ Nt or aa

❏ Full-length or CDR3

TRBV7-3 + CASSDRHQPQHF + TRBJ2-7

Bolotin et al. 2015, Zoete et al. 2013 



Overview of AIRR data on the repertoire level

❏ AIR-seq (Bulk or Single cell, with or without UMIs)

❏ Antibody repertoire proteomics (Cheung et al. 2012, Sato et al. 2012,  Wine et al. 2015,  Snapkov et al. 2021)

❏ Paired AIRs mapped to Ag specificity (Setliff et al. 2019, “A new way of exploring immunity” 2020)

❏ Paired AIRs + gene expression (Tu et al. 2019, Mathew et al. 2021, Shlesinger et al. 2022, 
Gao et al. 2022, Stephenson et al. 2021) 

Benichou et al. 2012, Yaari et al. 2015, Brown et al. 2019
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What immunological questions can we ask using AIRR data?

❏ Can we use an immune repertoire for disease diagnostics?

9

Healthy Diseased
Sequenced 

AIRRs

❏ How can we improve vaccines/CAR-T/mAbs/other therapeutics design?

Lu et al. 2020

AIRs antigen



Some of these questions can be answered with various 
AIRR computational tools

10Miho et al. 2018Valkiers et al. 2022



Challenges in computational analysis on AIRR data

11

#3: Low overlap: <1%

Katayama et al. 2022, Greiff et al. 2020

#4: Many-to-many binding #5: Sequence similarity ≠ similar binding 



Machine learning (ML) provides various approaches to 
detect signals in complex high-dimensional data
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What is machine learning?
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❏ Machine learning (ML): a set of pattern recognition and function approximation 
techniques that find patterns within groups in (large amounts of) data



What is machine learning?

❏ Machine learning (ML): a set of pattern recognition and function approximation 
techniques that find patterns within groups in (large amounts of) data

❏ A set of methods that allow for making inferences about the data
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Machine learning as a function approximation task

function f
examples 
represented 
by features:
immune 
receptor 
sequences

label: COVID-19 
specificity

positive
(antigen-specific)

negative
(not binding the 

antigen)

CASSFQNTGELFF
CASSSVNNNEQFF

CAVGEANTGELFF
CAYQEVNTGELFF

CAYQEVNTRRYF
CASSCFEVNTGEF

CAYQEVNTYF

CAYQEVNELFF
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label

Machine learning as a function approximation task

function fexamples 
represented 
by features

class 1
(e.g. positive class)

class 2
(e.g. negative class)

[0.2   0.4   2.3   5.12]
[32.1 54.2 9.12 32.2]

[3.2   0.4   7.5   12.9]
[12.3 40.2 5.2   1.2  ]

[0.4   2.1   2.2   0.1  ]
[8.14 6.1   0.2   0.03]
[11.1 3.02 6.1   0.05]

[3.1   5.6   8.1   0.02]

feature vector 
(one example)

feature

encoded data
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Representation 
(encoding): 
manually set or learned

Parameters of function 
f are learned during 
training



Building predictive models

❏ Machine learning discovers statistical associations in the data 
→ these associations enable good prediction
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Building predictive models

❏ Machine learning discovers statistical associations in the data 
→ these associations enable good prediction

❏ Aim: get a good predictive model, but also get biological insight

❏ This is why we want the ML models to be interpretable

❏ Not causal relations, but starting points for further analyses
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+ Many more!

There is a surge in (AIRR) ML studies

21



ML application areas in AIRR analyses
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Predicting receptor specificity
❏ Examining sequence similarity: 

Find the similarity between known positive and negative sequences, and predict the 
specificity to be the same as the sequences in the closest proximity
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Predicting receptor specificity
❏ Examining sequence similarity: 

Find the similarity between known positive and negative sequences, and predict the 
specificity to be the same as the sequences in the closest proximity

TCRdist, Dash et al. 2017

GLIPH, Glanville et al. 2017
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Sequencing data

iSMART, Zhang et al. 2020



Predicting receptor specificity

❏ Discovering short motifs in the sequence that are indicative of its specificity

❏ Predictions made based on physicochemical properties of receptors

Ostmeyer et al. 2019
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Chronister et al. 2021



Predicting receptor specificity

❏ Discovering short motifs in the sequence that are indicative of its specificity

❏ Predictions made based on physicochemical properties of receptors

Ostmeyer et al. 2019
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Chronister et al. 2021 Kanduri et al. 2022

AIRR datasets with varying properties



Predicting receptor specificity

❏ Modeling antibody-antigen interactions

30

Zhang et al. 2022



Predicting receptor specificity

❏ Modeling antibody-antigen interactions
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❏ Using structural information

Zhang et al. 2022



Analysis of AIR data

❏ Learning a latent representation using sequence and gene expression data
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Analysis of AIR data

❏ Learning a latent representation using sequence and gene expression data

mvTCR, Drost et al. 2022
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Analysis of AIR data

❏ Learning a latent representation using sequence and gene expression data

mvTCR, Drost et al. 2022
34

Benisse, Zhang et al. 2022



Analysis of AIR data

❏ Learning a latent representation using sequence and gene expression data

mvTCR, Drost et al. 2022
35GIANA, Zhang et al. 2021

Benisse, Zhang et al. 2022



Predicting the 3D structure of AIRs

❏ Antibody-specific methods achieve better prediction 
performance than generic protein structure prediction tools

36

ABlooper, Abanades et al. 2022
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Predicting the 3D structure of AIRs

❏ Antibody-specific methods achieve better prediction 
performance than generic protein structure prediction tools

ImmuneBuilder, Abanades et al. 2022
39

DeepAb, Ruffolo et al. 2022

ABlooper, Abanades et al. 2022

IgFold, Ruffolo et al. 2022



Language models for antibody sequences

❏ Some of the previous models are based 
on language models
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Language models for antibody sequences

❏ Some of the previous models are based 
on language models

❏ Necessary to formalize the “antibody 
language”

❏ Improved interpretability through 
formalization

❏ Potential aim: therapeutics design

44ImmunoLingo, Vu et al. 2022



Generative models for AIRs
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Generative models for AIRs

❏ Modeling the VDJ recombination process (naive AIRs)

46

IGoR, Marcou et al. 2018, 
doi:10.1038/s41467-018-02832-w Davidsen et al. 2019, doi: 10.7554/eLife.46935



Generative models for AIRs

❏ Modeling the VDJ recombination process (naive AIRs)

❏ Modeling antigen–specific antibodies directly

47

IGoR, Marcou et al. 2018, 
doi:10.1038/s41467-018-02832-w Davidsen et al. 2019, doi: 10.7554/eLife.46935

Saka et al. 2021, 
doi: 10.1038/s41598-021-85274-7

Shan et al. 2022, 
doi: 10.1073/pnas.2122954119



Antibody design with machine learning

48

❏ Epitope specificity, affinity 
and developability

❏ Public repositories: 
iReceptor, IEDB, AbDb, 
AgAbDb

❏ Synthetic data: Absolut!

Review: Akbar et al. 2022, 
doi:10.1080/19420862.2021.2008790



TCRs and peptide-MHC complexes

❏ For TCRs to recognize a peptide, it has to be presented by the MHC complex
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TCRs and peptide-MHC complexes

❏ For TCRs to recognize a peptide, it has to be presented by the MHC complex

❏ Tasks: predicting peptide-MHC binding, predicting the binding of a TCR to 
pMHC complex
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TCRs and peptide-MHC complexes

❏ For TCRs to recognize a peptide, it has to be presented by the MHC complex

❏ Tasks: predicting peptide-MHC binding, predicting the binding of a TCR to 
pMHC complex

51NNAlign in the review by Nielsen et al. 2020, 
doi:10.1146/annurev-biodatasci-021920-100259



Diagnosing immune-related diseases with AIRRs

❏ Repertoire classification is a multiple instance learning (MIL) problem
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Diagnosing immune-related diseases with AIRRs

❏ Repertoire classification is a multiple instance learning (MIL) problem
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MIL review: Carbonneau et al. 2018 
doi:10.1016/j.patcog.2017.10.009



Custom ML approaches for diagnostics

DeepRC, Widrich et al. 2020
54



Different ML methods have different 
underlying assumptions 
– those should be conscious choices to 
reflect the problem domain

55



How do we ensure that the method can be 
applied to unseen receptors or repertoires?

(generalizability of ML methods)

56



A naive way to perform AIRR ML 
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Experimental data challenges in method development

❏ Usually small dataset size
❏ One of the largest AIRR studies: Liu et al., 2019 — 877 repertoires,18 million 

unique TCRs, Snyder et al., 2020 — 1815 covid TCR repertoires + 3500 controls
❏ Is the dataset representative? Performance estimation problems

❏ Available only for one particular problem setup
❏ What if the data was a bit different? Sensitivity estimation problem

❏ No ground truth information
❏ What was learned? Generalizability problem   

58
Sandve and Greiff, 2022,
doi: 10.1093/bioinformatics/btac612



Will our ML method also work good on an unseen data? 

59

60% accuracy

Unseen AIRR
dataset 



Nested cross validation might improve generalizability

Data splits:



Nested cross validation might improve generalizability



Nested cross validation might improve generalizability



There are several levels of ML verification

63

Can we generalise?

If well-studied prior knowledge is  
not available

If well-studied prior knowledge is 
available

Chen et al., bioRxiv, 2022



What can be a prior knowledge in AIRR case?
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AIRR ML methods should be also benchmarked on ground 
truth synthetic AIRR data

65

❏ High accuracy
❏ Have we learned the ground truth?



Current VDJ simulation frameworks have pros and cons

66

❏ IGoR (nt) / OLGA (aa) (Marcou et al. 2017)

 

+ Accurate VDJ recombination model
+ Generation probability evaluation
+ Fast (generates 100k seqs in 5 min)
- No signal embedding
- One dataset per one run 

❏ immuneSIM (Weber et al. 2020)

+ Basic signal implantation (gapped k-mers)
+ Simulates clonal abundances
+ Productive receptors
- Slow (100k seqs in 1 hour)
- No generation model and generation 

probabilities
- One dataset per one run



Profiling AIRR ML models on a range of basic datasets 

67

❏ OLGA TCRβ CDR3 sequences (aa) + 
implanted gapped 2—5-mers 

❏ Identified parameter boundaries where 
baseline methods (Logistic Regression) 
already achieve high accuracy

Immune signal can be more complex!

Kanduri et al. 2022, doi: 10.1093/gigascience/giac046



Definition of immune event and immune signal
We hypothesise that immune signal should be a substring of the receptor:

❏ (Gapped) k-mer (Akbar et al., 2021)
❏ Full-length receptor (Emerson et al., 2017)
❏ Motif (PWM with a fixed length)
❏ The most general definition: immune signal is a function: AIR → True/False 

68Chernigovskaya, unpublished



A universal AIRR simulator wishlist
❏ Challenges in AIRR simulator development 
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❏ Properties of a universal AIRR simulator

Chernigovskaya, unpublished



Framework for simulating a “native”-like AIR(R) datasets 

70

Chernigovskaya, unpublished

❏ High accuracy
❏ Have we learned the ground truth?

Robert et al. 2022 



Conceptual problem: reproducible AIRR ML

71
How can we make all these studies reproducible? 



Recommendations for 
ML in biology



                     is a platform for development and transparent 
comparative evaluation of AIRR-ML methods

73

https://immuneml.uio.no

https://immuneml.uio.no


Diagnosing diseases with AIRRs
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Diagnosing diseases with AIRRs
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The causal inference framework

80

❏ Formally describes the data-generating process to discover causal effects between the 
variables in the process, under a set of assumptions (Pearl 2009)

❏ Causal effect of X on Y: the difference in the value of Y while changing X and keeping all 
other variables and conditions the same

Causality doesn’t matter [too much] for prediction tasks, but when 
obtaining the data or applying methods to new populations, causality 
can help formalize and solve challenges even in predictive settings



The causal inference framework in the AIRR field

81

❏ A causal model for a viral infection 
(different for different diseases)

Pavlovic et al. 2022
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The causal inference framework in the AIRR field
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❏ A causal model for a viral infection 
(different for different diseases)

❏ Selection bias: 

❏ preferential selection of study participants

❏ spurious correlations: introduced, 
removed, reversed

❏ Confounding bias:

❏ influence both the immune state and AIRR

❏ Batch effects & timing of measurement Pavlovic et al. 2022



Summary

❏ AIRR ML ≠ applying several fancy ML method to AIRR data 

❏ Complex biological structure (both receptors and repertoires)

❏ Large variability and sparsity

❏ Causal variables (sex, age, HLA etc)

❏ AIRR ML methods should be benchmarked on both experimental and synthetic data 
with known ground truth

❏ Ultimately we need large-scale experimental data with known ground truth 
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