@ UiO ¢ University of Oslo

ANTI
W) arrr  B9DY
.ETY

Community

Machine learning for the analysis of
adaptive Immune receptors and
repertoires

Maria Chernigovskaya
mariiac@uio.no
AIRR Community Webinar

Milena Pavlovic
milenpa@uio.no November 15, 2022



“Life is trying things to see if they work.”
- Ray Bradbury
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Adaptive immune receptors (AIRs) and repertoires (AIRRs)
A Adaptive immune receptors (AIRs) A Adaptive immune repertoires (AIRRs)
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V(D)J recombination assembles AIRs (BCRs or TCRs)

VDJ recombination

— VAR S VR Dy - .. - Dn Ji — ... — X
germline DNA with gene segments
V1 —— Dp Jq - D-J rearrangement antigen
O ( antigen
L heavy ®
light
—— V1 N Dy B 4 VDJ rearrangement a
CARSRIVLVPGFDYW CDR3
B cell T cell

Alt et al. 1980, 1984, 1992, Bassing et al. 2000, 2002, Bareto et al. 2000, Schatz et al. 2012



Overview of AIRR data on the receptor level

TCR/BCR structure

TCR/BCR sequence TCR/BCR function (binding)

@ Ntoraa

TCR constant
domain

A Full-length or CDR3

TCR variable
domain

D' J

Peptide

5°UTR L1 L2 FR1 FR3 CDR3 FR4

TRBV7-3 + CASSDRHOPOHEF + TRBJ2-7

Bolotin et al. 2015, Zoete et al. 2013



Overview of AIRR data on the repertoire level

1 AIR-seq (Bulk or Single cell, with or without UMISs)

P5 DB MB V D J C P7
N D
Flow cell — e Flow cell
binding site 5 DB MB . D o | DiNding site 8 8 1
O D fifdil
— :. = }VH consensus
-Sequ:ncilng " ' . ' ' ' ' . l
errer " Paired Non paired
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———H— }——-— V.-V, data V.-V, data

Benichou et al. 2012, Yaairi et al. 2015, Brown et al. 2019

Antibody repertoire proteomics (Cheung et al. 2012, Sato et al. 2012, Wine et al. 2015, Snapkov et al. 2021)
Paired AIRs mapped to Ag specificity (Setliff et al. 2019, “A new way of exploring immunity” 2020)

Paired AIRs + gene expression (Tu et al. 2019, Mathew et al. 2021, Shlesinger et al. 2022,
Gao et al. 2022, Stephenson et al. 2021)
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What immunological questions can we ask using AIRR data?

A Can we use an immune repertoire for disease diagnostics?

Sequenced
Healthy Diseased AIRRs

AIRs antigen

1 How can we improve vaccines/CAR-T/mAbs/other therapeutics design?

Market Value (Billion|
o3388883888

Year

Lu et al. 2020



Some of these questions can be answered with various
AIRR computational tools

( Basis Method Tools )
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Challenges in computational analysis on AIRR data

#1: Massive Diversity ~1013

Possible TCR
sequences
~10"

Est. #T Cells
per person

in sample

#2: Limited Observation

#4: Many-to-many binding

2 #

~
~

Katayama et al. 2022, Greiff et al. 2020

#3: Low overlap: <1%

#5: Sequence similarity # similar binding

~#Y

Epitope

#Y‘
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Machine learning (ML) provides various approaches to
detect signals in complex high-dimensional data
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What is machine learning?

A Machine learning (ML): a set of pattern recognition and function approximation
techniques that find patterns within groups in (large amounts of) data
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What is machine learning?

A Machine learning (ML): a set of pattern recognition and function approximation
techniques that find patterns within groups in (large amounts of) data

A A set of methods that allow for making inferences about the data
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Machine learning as a function approximation task

label: COVID-19
specificity

(antigen-specific)

examples ,
represented function f
by features: CAYQEVNTRRYF

immune

receptor CASSCFEVNTGEF

sequences CAYQEVNTYF

CAYQEVNELFF

negative
(not binding the
antigen)
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Machine learning as a function approximation task

__________________________

feature vector
(one example)

label

examples

represented function f (e.g. positive class)

by features 0.4 21 2.2 : class 2
'[8.146.1 0.2 0.03] (e.g. negative class)
' ' feature

[11.13.026.1 0.05]:
[3.1 5.6 8.1 0.02]:

16

encoded data



Machine learning as a function approximation task

feature vector e e EEEE

Parameters of function label
(one example)

f are learned during
training

re;(r?rrggé?:ed function f (e.g. positive class)

by features 0.4 21 22 . class 2
'[8.146.1 0.2 0.03] (e.g. negative class)
' ' feature

[11.13.026.1 0.05]:
[3.1 5.6 8.1 0.02]:

Representation

(encoding):

manually set or learned 17
encoded data



Building predictive models

A Machine learning discovers statistical associations in the data
— these associations enable good prediction
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A Machine learning discovers statistical associations in the data
— these associations enable good prediction

d  Aim: get a good predictive model, but also get biological insight

A This is why we want the ML models to be interpretable
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Building predictive models

3

Machine learning discovers statistical associations in the data
— these associations enable good prediction

Aim: get a good predictive model, but also get biological insight

A This is why we want the ML models to be interpretable

Not causal relations, but starting points for further analyses

20



There is a surge in (AIRR) ML studies

Published: 03 April 2017

Immunosequencing identifies signatures of
cytomegalovirus exposure history and HLA-
mediated effects on the T cell repertoire

Ryan O Emerson &3, William S DeWitt, Marissa Vignali, Jenna Gravley, Joyce K Hu, Edward J Osborne,
Cindy Desmarais, Mark Kiinger, Christopher S Carlson, John A Hansen, Mark Rieder & Harlan S Robins

Nature Genetics 49, 659-665(2017) | Cite this article

Article | Published: 07 November 2022
Predicting unseen antibodies’ neutralizability via
adaptive graph neural networks

Jie Zhang &, Yishan Du, Pengfei Zhou, Jinru Ding, Shuai Xia, Qian Wang, Feiyang Chen, Mu Zhou,

Xuemei Zhang, Weifeng Wang, Hongyan Wu &, Lu Lu &1 & Shaoting Zhang

Nature Machine i (2022) | Cite this article

DeepTCR: a deep learning framework for understanding T-
cell receptor sequence signatures within complex T-cell
repertoires

John-William Sidhom, () H. Benjamin Larman, Petra Ross-MacDonald,

Megan Wind-Rotolo, Drew M. Pardoll, {2} Alexander S. Baras
doi: https://doi.org/10.1101/464107

TITAN: T-cell receptor specificity prediction with
bimodal attention networks 3

Anna Weber %, Jannis Born, Maria Rodriguez Martinez

Bioinformatics, Volume 37, Issue Supplement_1, July 2021, Pages i237-i244,
https://doi.org/10.1093/bioinformatics/btab294
Published: 12 July 2021

Translational Science

Biophysicochemical Motifs in T-cell Receptor
Sequences Distinguish Repertoires from Tumor-
Infiltrating Lymphocyte and Adjacent Healthy Tissue

Jared Ostmeyer, Scott Christley, Inimary T. Toby, and Lindsay G. Cowell
DOI: 10.1158/0008-5472.CAN-18-2292 Published April 2019 | #) Check for updates

Predicting antigen specificity of single T cells
based on TCR CDR3 regions
David S Fischer, Yihan Wu, Benjamin Schubert, Fabian J Theis

Author Information

Mol Syst Biol (2020) 16: e9416 https://doi.org/10.15252/msb.20199416

Journal of Computational Biology, Vol. 26,No. 6 | Research Articles

Attentive Cross-Modal Paratope Prediction

Andreea Deac [, Petar VeliCkovi¢, and Pietro Sormanni

Published Online: 6 Jun 2019 | https://doi.org/10.1089/cmb.2018.0175

Parapred: antibody paratope prediction using
convolutional and recurrent neural networks @

Edgar Liberis &, Petar Veli¢kovi¢, Pietro Sormanni &%, Michele Vendruscolo, Pietro Lio

Bioinformatics, Volume 34, Issue 17, 01 September 2018, Pages 2944-2950,
https://doi.org/10.1093/bioinformatics/bty305

Mining adaptive immune receptor repertoires for
biological and clinical information using machine
learning

Victor Greiff !, Gur Yaari 2, Lindsay G. Cowell > 2=

Modern Hopfield Networks and Attention for Inmune Repertoire Classification

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurlPS 2020)
Bibtex »  Paper»  Supplemental »

Authors

Michael Widrich, Bernhard Schéf), Milena Paviovic, Hubert Ramsauer, Lukas Gruber, Markus Holzleitner, Johannes
Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, Ginter Klambauer

Research article | Open Access | Published: 28 May 2019

Capturing the differences between humoral immunity in the
normal and tumor environments from repertoire-seq of B-cell
receptors using supervised machine learning

BMC. 20, Article number: 267 (2019) | Cite this article

ORIGINAL RESEARCH ARTICLE
Front. Immuniol., 29 November 2019 | https://doi.org/10.3389/fimmu 2019.02820

Detection of Enriched T Cell Epitope Specificity
in Full T Cell Receptor Sequence Repertoires

Sofie Gielis'?*, Pieter Moris**!, Wout Bittremieux'*4t, Nicolas De Neuter'2, Benson
Ogunjimizss7,  Kris Laukens'2* and  Pieter Meysman'2+t

De novo prediction of cancer-associated T cell
receptors for noninvasive cancer detection

Daria Beshnova', ® Jianfeng Ye', ® Oreoluwa Onabolu?, @ Benjamin Moon?, Wenxin Zheng*, ® Yang-Xin Fu®5,
James Brugarolas?, Jayanthi Lea® and @ Bo Li"5"
"Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
?Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
“Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA.

SDepartment of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
— author. Email: b du
- Hide authors and affiliations

Science Translational Medicine 19 Aug 2020:
Vol. 12, Issue 557, eaaz37
DOI: 10.1126/scitranslmed.aaz3738

+ Many more! -4



ML application areas in AIRR analyses



Predicting receptor specificity
A Examining sequence similarity:

Find the similarity between known positive and negative sequences, and predict the
specificity to be the same as the sequences in the closest proximity
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Predicting receptor specificity
A Examining sequence similarity:

Find the similarity between known positive and negative sequences, and predict the
specificity to be the same as the sequences in the closest proximity

TCR1

Va TRAVZW/DV}
Ja=TRAJ53
\)
1

VB=TRBV29
JB=TRBV2-1

Va=TRAV7-2
Jo=TRAJ31

VB=TRBV19
JB=TRBV2-7

TCR2

TCRdist Dash et al. 2017



Predicting receptor specificity

A Examining sequence similarity:

Find the similarity between known positive and negative sequences, and predict the

specificity to be the same as the sequences in the closest proximity

VB=TRBV29

Ja=TRAJ53 JB=TRBV2-1

TCR1 R
Va=TRAV21/DV12 ;G} A

y i
CDR25/ \
S ] come \ O\ o
CDR2a  CDR1a CDR3a l CDR1B \
v \ ¥ TCRist =
ccccccccccc ASDRKS GLQ-QN TISGNEY SGGSNYKL SFGREQ MSHET
jot 444444 444444 44344

44 4444 4434420 04000422 040400
R2COR-seq: NKASLH IFSNGE DRN-VDY SRGSNNRI SIGNEQ FNHDT

Weight: 111111 111111 1111111 33333333 333333 11111 111111 11111 "‘C‘m‘_
N N t =170
CDR2a CDR1a CDRSGCDM(B: 5 ,
CDR2.5¢ DR1 CDR2.5¢
A A '
NS 1 b,
& L
Va=TRAV7-2 VB=TRBV19
Jo=TRAJ31 JB=TRBV2-7

TCR2

TCRdist, Dash et al. 2017

43020 044434 30244 Y (Weigh* Ancl

V-segment
Score

CDR3 length
Global Score

similarity
TCR clustering ClOHHIS;X';‘):nsion T;Sj,";ﬂ“;?

Structural
constraints

Motif search
HLA allele
CASSIRSSYEQYF Score
y CASSSRSSYEQYF
CASSTRSSYEQYF Motif
CASSTRSSSEQYF Score
Ci YEQYF
CASSIRSSDTQYF

CASSIRSAYEQYF

GLIPH, Glanville et al. 2017
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Predicting receptor specificity
A Examining sequence similarity:

Find the similarity between known positive and negative sequences, and predict the
specificity to be the same as the sequences in the closest proximity

V-segment
Score
vp=TRBV29 Sequencing data
JB=TRBV2-1 CDR3 length
Global Score
similarity Fil ll
) tering
itr::::rl:l;a'; TCR clustering Clonal expansion TCR specificity ~1,500,000 ~82,000 nonpublic
, : ) \ Score group scores CDR3 calls u°n, 5 CDR3s
coRzSa [ | l CDF‘eap \ \ P Motif search lProducﬁve = 50 dn .8 B8
/CDR2u CDR1a CDR3a lCDRm \ HLA allele 170000 Dc?g “TCR 88 O:
\ ¥ v \ CASSIRSSYEQYF Score complete CDR3s Repertoire ~ ~ ~ -~ 4
TCR1CDR-seq: ASDRKS GLQ-QN TISGNEY SGGSNYKL SFGREQ MSHET E
ANdSt 444444 444444 4434420 04000422 040400 43020 044434 30244 CASSSRSSYEQYF
TCR2CDR-seq: NKASLH IFSNGE DRN-VDY SRGSNNRI SIGNEQ FNHDT S 7
weon: 111111 111111 1111111 33333333 333333 11111 111017 11117 == _ ) CASSTRESYEQYR Motif iSMART algorithm
A A t = CASSTRSSSEQYF Score SEETS
CDR3 N
CDR\ZU COR1a Jo, (B:DWB b c YEQYF CsALGGSAETLw
CDR2.5a \ \ / ] / CDR2.5f CASSIRSSDTQYF =t —> CSAGewTGQ:Yr
5 CASSTRSAYEQYF oo CAS/QDLesDYe ,/
CDR3 Sequences Pairwise alignments

4.6K cancer-associated CDR3 clusters

Va=TRAV7-2 VB=TRBV19 CDR3 length CHACGAETLF COATVENERIFF
s GLIPH, Glanville et al. 2017 e
TCR2 =~ T S R e

> ‘ A ?E HLA allele

TCRdist, Dash et al. 2017 iISMART, Zhang et al. 2020



Predicting receptor specificity

A Discovering short motifs in the sequence that are indicative of its specificity

A Predictions made based on physicochemical properties of receptors

CDR3 from X-ray structures aligned by contact sites

Ostmeyer et al. 2019
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Predicting receptor specificity

A Discovering short motifs in the sequence that are indicative of its specificity

A Predictions made based on physicochemical properties of receptors

CDR3 from X-ray structures aligned by contact sites

Input sequence

ASSIRSAGELF

El; E2,/ES
TCRMatch

ASSIRAAGELF ATSSRQAGKLF ASSIRSVGEQY ASSIGIGEAF
E1, E4 E1,E4 E2, E4, E6

50%

0%.. |III

Ostmeyer et al. 2019 Chronister et al. 2021



Predicting receptor specificity

A Discovering short motifs in the sequence that are indicative of its specificity

A Predictions made based on physicochemical properties of receptors

CDR3 from X-ray structures aligned by contact sites

50%

0%.. |III

Ostmeyer et al. 2019

Input sequence

ASSIRSAGELF

E1,E2,E3
TCRMatch
ASSIRAAGELF ATSSRQAGKLF ASSIRSVGEQY ASSIGIGEAF
E1,E4 E1,E4 E2, E4, E6

Chronister et al. 2021

AIRR datasets with varying properties

Dataset properties:

1. Sample size

2. Repertoire size
3. Class balance
4. Noise in '-' class

Signal properties:

1. Witness rate

2. Number of motifs
3. Motif size & gaps
4. Distributional shift

e

Kanduri et al. 2022
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Predicting receptor specificity

A Modeling antibody-antigen interactions

DeepAAl AR-GCN module AR-GCN module
u
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[ ]
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2 e
&
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Zhang et al. 2022



Predicting receptor specificity

A Modeling antibody-antigen interactions A Using structural information

DeepAAl AR-GCN module AR-GCN module
] u
5 m Le===""" > Nodeembedding | | Nodeembedding <-===="""F==-._ - ] . ” A N
Seon ‘2 B = / mE DeepAIR: a deep-learning framework for effective integration of sequence
] u FCg FC W . . .
1 € H - N < and 3D structure to enable adaptive immune receptor analysis
= -
). € ud
- e e § >< | 2| cosine ] Yu Zhao, ) Bing He, {0 Chen Li, Zhimeng Xu, Xiaona Su, Jamie Rossjohn, {2 Jiangning Song, Jianhua Yao
simil > & cin
e S| similarity doi: https://doi.org/10.1101/2022.09.30.510251

R

s : .
Unseen m FC B e =
Zm 7/ _' B R | Nodeembeddng, | T
- A relation graph of Abs —]
T——] A DLAB: deep learning methods for structure-based
" ofo[1[Jo]™ pooling HH 0l0 & . . . N
ofolol.l1 P WM B virtual screening of antibodies &
{% g g c} - g - g 1 Constantin Schneider, Andrew Buchanan, Bruck Taddese, Charlotte M Deane
§ olofo]l..]o el ! g ?
. SToToTTo :_6_9_@' 1o Bioinformatics, Volume 38, Issue 2, 15 January 2022, Pages 377-383,
g oTile =19 5 o ofo https://doi.org/10.1093/bioinformatics/btab660
CNN module Y- #2({ CNN module Published: 21 September2021 Article history v
Neutralize or not ICs, estimation
(classification) (Regression)

Zhang et al. 2022
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Analysis of AIR data

A Learning a latent representation using sequence and gene expression data
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Analysis of AIR data

A Learning a latent representation using sequence and gene expression data
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mvTCR, Drost et al. 2022



Analysis of AIR data

A Learning a latent representation using sequence and gene expression data

-
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Inputs Outputs v
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mvTCR, Drost et al. 2022



Analysis of AIR data

A Learning a latent representation using sequence and gene expression data

T-cell

Inputs

a-chain Gene expression

B-chain

CAGHTGNQFYF

CASSWGGGSHYGYTF

GE
encoder

3|npow SuIXin

Outputs

o

)

3

]

GE 2
decoder E
4

2

3

Joint latent space

JAJONOLHOVO
ueyd-n

4LAOAHSOOOMSSVI
uleyd-g

mvTCR, Drost et al. 2022

TCR repertoire

Isometric coordinates

Cruge graph of BOR

8888888888

Benisse sparse networks

[ BCR3

BoRS

Benisse, Zhang et al. 2022

TCR Pre-clusters Final TCR clusters
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.

z
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CASTYKTEAF TRBV2'01
GASTYRTEAF TRBV2'01

?| Cluster 2

GASSGVTEAF TRBV7-601

GASSGLTEAF TRBV7-4°01
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o XaursTea

Sequential Go
Encoding

o @
o
o ©
Nearest K-mer Guided
Neighbor Search SW Alignment

GIANA, Zhang et al. 2021
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Predicting the 3D structure of AIRs

A Antibody-specific methods achieve better prediction
performance than generic protein structure prediction tools

INPUT DATA »‘“‘ E(n)-EGNN ! OUTPUT LOQPS
W [ GENIKEY \ \
RO i | A
u1: (RASRDIKSYIN] L L/
INPUT CDR / ITERATIVELY UPDATE / \ CDR LOOP
GEOMETRY SEQUENCES 4 COORDINATES / STRUCTURES

ABlooper, Abanades et al. 2022
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Predicting the 3D structure of AIRs

A Antibody-specific methods achieve better prediction
performance than generic protein structure prediction tools

INPUT DATA ‘ ’ ' E(n)-EGNN \" /" OUTPUTLOQPS
H1 GFNIKEY \ \
G . ] oA -
WA i [ §
It /
INPUT CDR W ITERATIVELY UPDATE CDR LOOP
\__ GEOMETRY SEQUENCES / COORDINATES / / STRUCTURES /

ABlooper, Abanades et al. 2022

.@) Antibody Fv structure pred iction from sequence

Inter-res d e geometries
= TQ... %2 |
L: DIVLTQ I3 . Rosena
&S !;_:
DeepAb s ‘.
SRR ;5}

/z\urp Ibl structur 3\]A«bodyd sign
sssssss

o, Il

H: EVQLVE...

,,,,,,,,,,,,

DeepAb, Ruffolo et al. 2022
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Predicting the 3D structure of AIRs

A Antibody-specific methods achieve better prediction
performance than generic protein structure prediction tools

INPUT DATA ’ E(n)-EGNN NN/ ouTPuT LOOPS
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W3 [ DTAAYFDY | \ \
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2z F SLAE | /
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ABlooper, Abanades et al. 2022
( 1) Antibody Fv structure predlctlon from sequence Antibody sequence
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+ v
Graph Transformer
Update
J
&2 Ed
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=
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£/ predictions \-) scoring
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DeepAb, Ruffolo et al. 2022 IgFold, Ruffolo et al. 2022
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Predicting the 3D structure of AIRs

A Antibody-specific methods achieve better prediction

performance than generic protein structure prediction tools

J E(n)-EGNN
\\ \\

A e 0| A

INPUT DATA

H1: [ GFNIKEY |

€ Ha: DPEQGN.
H3: [ DTAAYFDY |
3) Ui (RASRDISYIN]
L (_yatsiaE ]
L

3 | LQHGESPWT

INPUT

CDR
\__ GEOMETRY

@ Antibody Fv structure prediction from sequence

idh )eometries
H: EVQLVE... 1520 TR
L: DIVLTQ... | %"

/5 Interpretable structure
@/ predictions

S

DeepAb, Ruffolo et al. 2022

Antibody design

SEQUENCES _/

OUTPUT LOOPS

ITERATIVELY UPDATE CDR LOOP
COORDINATES

STRUCTURES

ABlooper, Abanades et al. 2022

Antibody sequence
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Update
\
-

¥

Template structure

Nodes Edges
5 _— o
- |
i: LAy, — ) (\ ntion
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IgFold, Ruffolo et al. 2022

Antibody sequence

H: [QVALVQSGAEVKKPGASVKAGVNT (. . .) |
L: [

IACR(...) |

I
[ ABodyBuilder2 model ]

I

Ensemble of four structures

[ Model selection ]

Top ranked prediction

Structural refinement
with OpenMM

Final structure

ImmuneBuilder, Abanades et al. 2022
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Language models for antibody sequences

A Some of the previous models are based
on language models
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Language models for antibody sequences

A Some of the previous models are based
on language models

A Necessary to formalize the “antibody
language”

41



Language models for antibody sequences

A Some of the previous models are based
on language models

A Necessary to formalize the “antibody
language”

Antibody sequences Linguistic sequences

“Do you wish me a good
morning, or mean that it is
agood morning whether |
want it or not; or that you

feel good this morning; or
that it is a morning to be
good on?”

Machine learning/NLP:
Pretrained language models

. Goal:
statistically model " o
observed sequence data_/e—+—"\_ 7

Linguistic approach: Analytical, symbolically
designed models (ImmunoLingo)

Goal:
/o »c define explanator

y
Else and predictive rules of data
Processes large unstructured f:a‘?,ng?}nﬂﬂfcetsjred
sequencedata ML o o S seguence data

Lo Readily interpretable

Challenging to interpret
Identify natural language
Rational biotherapeutics design — , properties shared b;

y
antibody sequences (analogies)
U Formalize the antibody language
= 3 based on identified analogies
(linguistic models)

> Current approach > Proposed approach: Linguistically grounded deep antibody language model

ImmunoLingo, Vu et al. 2022 42



Language models for antibody sequences

A Some of the previous models are based
on language models

A Necessary to formalize the “antibody
language”

A Improved interpretability through
formalization

Antibody sequences Linguistic sequences

“Do you wish me a good
morning, or mean that it is
agood morning whether |
want it or not; or that you

feel good this morning; or
that it is a morning to be
good on?”

Machine learning/NLP:
Pretrained language models

. Goal:
statistically model " o
observed sequence data_/—=—"\_ 7

Processes large unstructured

Linguistic approach: Analytical, symbolically
designed models (ImmunoLingo)

Goal:
,c define explanatory
~° e and predx%tive rules of data

Cannot process
5 S large unstructured
sequence data

sequencedata ML o
Lo Readily interpretable

Challenging to interpret o
Identify natural language

m Rational biotherapeutics design -— , properties shared by

_— antibody sequences (analogies)
Formalize the antibody language
= , based on identified analogies
(linguistic models)

> Current approach > Proposed approach: Linguistically grounded deep antibody language model

ImmunoLingo, Vu et al. 2022 43



Language models for antibody sequences

A Some of the previous models are based
on language models

A Necessary to formalize the “antibody
language”

A Improved interpretability through
formalization

A Potential aim: therapeutics design

Antibody sequences Linguistic sequences

“Do you wish me a good
morning, or mean that it is
agood morning whether |
want it or not; or that you

feel good this morning; or
that it is a morning to be
good on?”

Machine learning/NLP:
Pretrained language models

. Goal:
statistically model " o
observed sequence data_fe—s—\_ 7

Processes large unstructured

Linguistic approach: Analytical, symbolically
designed models (ImmunoLingo)

Goal:
,c define explanatory
~° e and predx%tive rules of data

Cannot process
5 S large unstructured
sequence data

sequencedata ML o
o Readily interpretable

Challenging to interpret o
Identify natural language

m Rational biotherapeutics design -— , properties shared by
? _— antibody sequences (analogies)
U Formalize the antibody language
= ; based on identified analogies
(linguistic models)

> Current approach ) Proposed approach: Linguistically grounded deep antibody language model

ImmunoLingo, Vu et al. 2022 44



Generative models for AIRs
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Generative models for AIRs

A  Modeling the VDJ recombination process (naive AIRs)
pe(2)

>

X CASSSR...
TRBV7-2
TRBJ1-1

X:
CASSSR...
TRBV7-2
TRBJ1-1

IGoR, Marcou et al. 2018,

d0i:10.1038/s41467-018-02832-w Davidsen et al. 2019, doi: 10.7554/eLife.46935
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Generative models for AIRs

A  Modeling the VDJ recombination process (naive AIRs)
pe(2)

hok Y
X:

N A
@—»@ TRBJ1-1
IGoR, Marcou et al. 2018,
doi:10.1038/s41467-018-02832-w

A Modeling antigen—specific antibodies directly

>

X CASSSR...
TRBV7-2
TRBJ1-1

Davidsen et al. 2019, doi: 10.7554/eLife.46935

( LSTM training )

Sei;cT:nbestpafjmeter @ @ @
TH I §‘%ﬁ ntigen Mutations % % & ;4 @

Wet-lab

Further
Development
o it

( Sequence generation ] Geometric Neutraliation

= Deep Learning o . e
S isTv PN NI v @ @ @ - '
4 NLL = ) log(pk
Best model ; ®k) Optimized CDR Evaluation &

Antibody CDRs : N
( Compute NLL ) Library Selection

Saka et al. 2021, Shan et al. 2022,
doi: 10.1038/s41598-021-85274-7 doi: 10.1073/pnas.2122954119
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Antibody design with machine learning

H

Epitope specificity, affinity
and developability

Public repositories:
iReceptor, IEDB, AbDb,
AgAbDDb

Synthetic data: Absolut!

Training
dataset

Structure

—

Sequence

Architecture
AR
[
Ce
@
LSTM-RNN
—

E=

Transformer

Encoder Decoder

VAE
I Latent l
space

Sequence space re presentation

Random seed

4

=

General
protein dataset

sequence embedding

Condition w

High-dimensional
‘ Condition 6

Transfer learning

=

Antigen-specific
antibody dataset

Low-dimensional
latent representation

GAN
Real data
Discriminator,
Generator Generated|
data

Use cases

l ll‘

De novo generation

Conditional generation

}
| sequencey
l |

Out-of-distribution
generation

-
!
by T

Multiparameter optimization

Prospective evaluation

/i\

Computational oracle
Throughput 11l
Established

Experimental oracle
Throughput
Established 11

Review: Akbar et al. 2022,
doi:10.1080/19420862.2021.2008790
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TCRs and peptide-MHC complexes

A For TCRs to recognize a peptide, it has to be presented by the MHC complex
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TCRs and peptide-MHC complexes

A For TCRs to recognize a peptide, it has to be presented by the MHC complex

A Tasks: predicting peptide-MHC binding, predicting the binding of a TCR to
PMHC complex
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TCRs and peptide-MHC complexes

A For TCRs to recognize a peptide, it has to be presented by the MHC complex

A Tasks: predicting peptide-MHC binding, predicting the binding of a TCR to

PMHC complex

MHC pseudo-sequence l

Predicted motifs

SDEVARDLSL 0.202

=
HLA-B*44:02 ‘Mm i =G

Allele Seq V
HLA-A*01:01 YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY Input peptide + MHC
HLA-A*G2 00 VEANYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY " &
oA data L] @l
HLA-A*(= AYTWY ol o,
Peptide Target Allelle . . . o
1
vaiue

VLFIHPLI 483 HLA-A*02:11 = L. ‘ ‘ . = s et s
steepcTEL data 70 Hia-A*02:01 W ik S
RVIRTV$§I$ 1.000 LAAT30R0
eptide arget elle . . Predicted binding
YIGAMIEES D2i5 EB *07"02 HLA-A02:01 : Distance to training data ©.000 (using nearest neighbor HLA-A@2:01)
YLOWHAC {prppGaR 1 ! fila-g07:02 | ] e el ——
NASDRM: _B*57 : ok Threanotd for emk Sinding pepcides " 2.
ARDSVVLNF R HLA-8+27:09 Binding predictions Pos HA Peptide Identity  Score %Rank BindLevel
VRDLFQMKL al HLA-B*27:07 1 Haheoziol GSEELESLY CAA72837_1 gag_ 0.0003750 31.7353
FILKHTGPGI 1 HLA-A*02:01 5 WNAwosioi  EELESMT CAAPZAI7 -omy" 0.00a4B0 27.5105
_B*27:09 3 Wiaar: CESONIVA Ch72837 -1 o 0.0001790 41.0080
SRTMLLPLL 1 HLA-B*27: 6 HLA-A%02:01 ESLYNTVAT CAA72837_1_gag_ 0.0003230 33.5185
YQLENQPSE 0 HLA-A*24:02 3 MAAGZOL  INTVATLY CA7ZB371-geq- 0.0019710 10,8013
YNWFCTPECD 0 HLA-B*27:05 10 WAMOOL  NTATLIY CAAP2E37 i sour 0.0467040 3.0692
11 HLA-A%02:01 TVATLYCVH  CAA72837_1_gag_ 0.0000260 70.0000
12 HLA-A%02:01 VATLYCVHQ CAA72837_1_gag_ ©.0000370 64,6429
B RAhene  ATYOMON ChTIaa I en- o.oonsss o7.4des

NNAlign in the review by Nielsen et al. 2020,
doi:10.1146/annurev-biodatasci-021920-100259
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Diagnosing immune-related diseases with AIRRs

A Repertoire classification is a multiple instance learning (MIL) problem
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Diagnosing immune-related diseases with AIRRs

A Repertoire classification is a multiple instance learning (MIL) problem

instance similarity
and distribution

instance instance label

instance instance label

repertoire
dataset

instance label

instance T\
(receptor sequence) instance label
ASSYPGETQY o
ASSQVPGQNEQF +
ASSSPGGANVLT -
ASSLEGQQPQH

MIL review: Carbonneau et al. 2018
doi:10.1016/j.patcog.2017.10.009

bag label: +

bag label: -
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Custom ML approaches for diagnostics

Published: 03 April 2017

Immunosequencing identifies signatures of
cytomegalovirus exposure history and HLA-mediated
effects on the T cell repertoire

Ryan O Emerson &, William S DeWitt, Marissa Vignali, Jenna Gravley, Joyce K Hu, Edward J Osborne,

Cindy Desmarais, Mark Klinger, Christopher S Carlson, John A Hansen, Mark Rieder & Harlan S Robins

Nature Genetics 49, 659-665 (2017) | Cite this article

Article | Open Access | Published: 11 March 2021

DeepTCRis a deep learning framework for revealing
sequence concepts within T-cell repertoires

John-William Sidhom &, H. Benjamin Larman, Drew M. Pardoll & Alexander S. Baras

Nature Communications 12, Article number: 1605 (2021) | Cite this article

[Submitted on 9 Aug 2022]
Multiple Instance Neural Networks Based on Sparse Attention for Cancer
Detection using T-cell Receptor Sequences

Younghoon Kim, Tao Wang, Danyi Xiong, Xinlei Wang, Seongoh Park
Cite as: arXiv:2208.04524 [statML]

(or arXiv:2208.04524v1 [statML] for this version)

https: //doi.org/ 10.48550/arXiv.2208.04524 @

Modern Hopfield Networks and Attention for Inmune Repertoire
Classification

Michael Widrich, Bernhard Schifl, Hubert Ramsauer, Milena Pavlovi¢, Lukas Gruber, Markus Holzleitner,
Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, Glinter Klambauer

Cite as arXiv:2007.13505 [es.LG]
(or arXiv:2007.13505v1 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2007.13505 @

Journal reference: Advances in Neural Information Processing Systems 33 (NeurlPS 2020)

Biophysicochemical Motifs in T-cell Receptor Sequences
Distinguish Repertoires from Tumor-Infiltrating Lymphocyte
and Adjacent Healthy Tissue @3

Jared Ostmeyer  ; Scott Christley; Inimary T. Toby; Lindsay G. Cowell &%

Cancer Res (2019) 79 (7): 1671-1680.

https://doi.org/10.1158/0008-5472.CAN-18-2292  Article history [c4

Disease diagnostics using machine learning of immune receptors

Maxim E. Zaslavsky, {2 Nikhil Ram-Mohan, {2 Joel M. Guthridge, () Joan T. Merrill, ) Jason D. Goldman,
Ji-Yeun Lee, (& Krishna M. Roskin, 2 Charlotte Cunningham-Rundles, @ M.Anthony Moody,

Barton F. Haynes, (= Benjamin A. Pinsky, (= James R. Heath, () Judith A. James, {/ Samuel Yang,
Catherine A. Blish, {2 Robert Tibshirani, {2 Anshul Kundaje, {2 Scott D. Boyd

doi: https://doi.org/10.1101/2022.04.26.4893 14

outputp

fully connected
o n_features=1
shape=(1)

sum over sequences
shape=(d,)

sequence-attention
elementwise multiplication
shape=(N,d)

=
(softmax]

queries - keys’
n_features=1

values shape=(N,1)
Z=(z1,....2N) keys
attention SNN
n_layers=2
h1 n_features=32 hz

shape=(N,32)

maximum over sequence positions
shape=(N,d,)

1ID-CNN
n_layers=1
n_kernels=d,
shape=(N,d,dy)

X=(x1,...,.XN)

concatenation
shape=(N,d;,23)

amino acid features position features
shape=(N,d|,20) shape=(N,d|,3)

54
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Different ML methods have different
underlying assumptions

— those should be conscious choices to
reflect the problem domain

55



How do we ensure that the method can be
applied to unseen receptors or repertoires?
(generalizability of ML methods)
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A naive way to perform AIRR ML

Several AIRR ML Prediction accuracy
methods

— EF_@ — 90% accuracy

Logistic Regression

— E—_@J —— 99% accuracy vV

Neural Network

NN EEEE

Juid

Experimental

AIRR dataset
e E_@ ——— 96% accuracy

Random Forest




Experimental data challenges in method development

A Usually small dataset size
A One of the largest AIRR studies: Liu et al., 2019 — 877 repertoires,18 million
unique TCRs, Snyder et al., 2020 — 1815 covid TCR repertoires + 3500 controls
1 Is the dataset representative? Performance estimation problems

A Available only for one particular problem setup
[ What if the data was a bit different? Sensitivity estimation problem

A No ground truth information
A What was learned? Generalizability problem

Sandve and Greiff, 2022,
doi: 10.1093/bioinformatics/btac612
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Will our ML method also work good on an unseen data?

Experimental

AIRR dataset

Several AIRR ML Prediction accuracy

———

methods

F@J —  90% accuracy
ap

Logistic Regression

———— 99% accuracy VvV
J@J ’ y

Neural Network

E@J ——  96% accuracy

Random Forest

NN NNNENN]

% 60% accuracy

Unseen AIRR
dataset
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Nested cross validation might improve generalizability

Training & Validation Test

Data spilits: 1 > 3 4 5

Training
¢ == Validation

Select the optimal ML setting



Nested cross validation might improve generalizability

Training & Validation Test

Training
¢ == Validation

Select the optimal ML setti:g/

Assess the performance of
the ML setting




Nested cross validation might improve generalizability

Training & Validation Test <€

e — Repeat
| — .Wlth
T — different
raining
¢ = Validation test set

Select the optimal ML setti:g/

Assess the performance of Y,
the ML setting




There are several levels of ML verification

Can we generalise?
Model Verification

Train Data =P

Test Data =P

ML Model

=P Prediction

=P Prediction

v

Explanation Verification

Knowledge Verification

ML Model =@» Explanation > Hypothesis

A U

Synthetic Synthetic
Data ground truth

ML Model =» Explanation -> Hypothesis

* U

e Lab Well-studied
Rala Experiment mechanism

If well-studied prior knowledge is
not available

Chen et al., bioRxiv, 2022

If well-studied prior knowledge is
available

63



What can be a prior knowledge in AIRR case?

Several AIRR ML Prediction accuracy
methods
Ground truth (unknown for experimental data) o
———— 90% accuracy
Model o — i
@ construction Realisation | —S.47— Logistic Regression
s 0
AIRR model AIRR generation
parameters r%odel AIRR dataset - j@ ——— 99% accuracy Vv
S : Neural Network
- E N, EEGHER . § T e Nt e s Experimental
} AIRR dataset
v I Dt rearrangement L . D ——— 96% accuracy
' ; J
—V1il D, IR VDJ rearrang gement Random Forest
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AIRR ML methods should be also benchmarked on ground
truth synthetic AIRR data

Can we identify the parameters?

Ground truth (unknown for experimental data) \ ‘
Model o
@ construction Realisation Y @1 m@n—» ‘II’ — [rx —— 99% accuracy

AIRR model AIRR i AIRR models Neural Network
mode generation arameters
parameters model AIRR dataset P Experimental
AIRR dataset
. germline DNA with gene segments .
S s [  High accuracy
Il
TS M— 1 Have we learned the ground truth?
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Current VDJ simulation frameworks have pros and cons

A |GoR (nt) / OLGA (aa) (Marcou et al. 2017)

e e
/ \
@ % ®

P(scenario) = P(V)P(J|V) P(D|V,J)P(delV|V)

x P(delJ|J) P(delD5'|0) P( |delD5’,0)
InsVD

x PinsvD) [T A1, )
InsIIZ)J

x PnsDd) T PIn,-)

+ Accurate VDJ recombination model
Generation probability evaluation
Fast (generates 100k seqgs in 5 min)

- No signal embedding

- One dataset per one run

Recombination

Modifications

immuneSIM (Weber et al. 2020)

immuneSIM

i n n
al abundance  potential poten ptions  potential inser S| 100 species/chain type
= . i + Lok
1 -
abundanc N =}

Basic signal implantation (gapped k-mers)
Simulates clonal abundances

Productive receptors

Slow (100k segs in 1 hour)

No generation model and generation
probabilities

One dataset per one run 66



Profiling AIRR ML models on a range of basic datasets

A OLGATCRP CDRS3 sequences (aa) +
implanted gapped 2—5-mers

A Ildentified parameter boundaries where
baseline methods (Logistic Regression)
already achieve high accuracy

Immune signal can be more complex!

Kanduri et al. 2022, doi: 10.1093/gigascience/giac046

a Experimental design & Workflow of the study
AIRR datasets with varying ) Limits & Capabilities of
dataset & signal properties Train ML models AIRR ML models
Dataset properties: Signal properties: b.:g:ilgﬁ:?zr::::)n
1. Sample size ",.__, 1. Witness rate ::g: I:It" i - Dataset properties
2. Repertoire size 2. Number of motifs ___, @ k-mer frequency c_;‘_, ___, Signal properties
3. Class balance 3. Motif size & gaps encoding - ML assumptions
4. Noise in *-' class 4. Distributional shift » 5-fold nested |
cross validation - Accuracy
b Implantation of immune state-associated sequence signal

=N

Random drawing and
implantation of signal
(k-mers) at a defined

IMGT positions

MARK, raaei i vt olass | —(09..108109 110111 ..117
PLY | e
Signal: List of 50% n PL*Y—1;
ground truth - B i
k-mers e 30 GEAR— 2
specific to an Y
immune state 10° M A RK 3
000 | = ;
\{ )} 108 GEAR— 4
Synthetic AIRR dataset of PLUY—®)
native-like TCRB CDR3 '+ class “. |
sequences (immune state) . T i

5x 1072 % of sequences
received implantation (witness rate)

g
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Definition of immune event and immune signal

We hypothesise that immune signal should be a substring of the receptor:

1  (Gapped) k-mer (Akbar et al., 2021)
A Full-length receptor (Emerson et al., 2017)
d  Motif (PWM with a fixed length)
A The most general definition: immune signal is a function: AIR — True/False
Immune signals p Labels
onlall ~ . N immune 2
EAS P ('\)A'(Flfs ) el - st e\(emi“; Label 1,
o - ) CT CTCT - ton3 I ) / ‘e.g., HIV
Target AACA ARIXT + positon | Label 2,
Nucleotide AXIRT + IGHJ7 // e.g., T1D
‘,:":'l:“ ‘1{_’:::’_’:—_ TC + paired chain- /
e PR e
I\ mino aci — | eg.,Flu
Healthy Diseased ~ - AAcAT °

J

Chernigovskaya, unpublished 68



A universal AIRR simulator wishlist

A Challenges in AIRR simulator development

Synthetic AIRR data nativeness Overlapping signals

Sequence level

AIRR simulator é Signal 2 Signal 3
I - IGHV30 + CASSIMMIEKLAKENEQY + IGHJS5
i Repertoire level
“ CASSIMMIRKKALENEQY
CASSIMMIEAKELANEQY
CASSIMMIEKLAKENEQY :
Synthetic AIRR data AIRR-seq data CASVIMMISRLAKENEQY Signal 2
CASSMCAWEKLAKENEQY o .\
-------------------------- CASSIMCIEKLAKENEQY ©!gNal 2
Slmllar biological propertles’7 CASSCMMCPKLAKENEQY

A Properties of a universal AIRR simulator

Similar biological Does not break biological
statistics distributions properties of AIRR data

CASGKSWERLAFDIW \( b
conserved regions il

s’imulation artifactts

AiRR-seq data statistics, e.g. Pgen

AAAGKSWERLAFWID

N | L
Synthetlc AIRR data statistics, e.g. Pgen
Chernigovskaya, unpublished

Introducing simulation artifacts

Implanted signal != detected S|gnal

gIeT

Immune signal Detected signal

Implanted signal
AIRR simulator —— ML

Synthetic data

Can simulate signal of
varying complexity

def signal:
v_gene = IGHV33;
CDR3 contains motif (A/C)RRR;

motif position in the CDR3 = 4 or 6;

CDR3 length = 122A;

|

¥
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Framework for simulating a “native™-like AIR(R) datasets

Background AIR generation

Immune signal enrichment
Set of random AIRs

V(D)

Synthetic Real-world,
o9 GOk, or g ox
immuneSIv AIRR da

1. V(D)J parameter distribution

Pgen = 0.0008
Pgen =0.02

L}

Pgen = 166

Pgon = 1e-9 =3 pgon=1e-25

A

Estimated Pgen distribution

2. Set of background (paired) AIRs

AInsilico 30-antibody-antigen structures

Sequence

seau

[ p—

ML

WeMachineleaming

D. Exploration of ML strategies

Encoding

Aggregate
enceagegate

Accuracy

— E—

%
2 |
& Rejection sampling  Signal implantation

| Implanted
Event search —

Importance sampling J
L AL | [Pgen

|

Event1 Event2 Eventn Noevents

Event-specific (paired) AIRs

7.300'CORH3
sequences

159

5
antigens

Absolut
Ky

' ad

A A

PRVG

#of training sequences
Encoding

MLarchiectures
(deep and shallow learning)

L)

Bndng  Nonbindng

Merging and refinement

Event co-occurance matrix (with clonal freqs)

Clonal Clonal freq

Immune events Pgen freq  distributions
o-5|

(Paired) AIRs

AR contains event
W e | o Faise

(Repertoire-based only)
Frequency of each immune event
5%
Event 1
12% %

Event 2| tn

Repeat for
each AIRR

Chernigovskaya, unpublished

8. Generation of 1 Billion binding affinity data

O3 sequences

Binding affinty distribution

Binder/non-binder
[binary classification]

Multiclass classification of
antigen-specific sequences.

Paratope-dependent
epitope prediction

C. ML formalization of antibody specificity prediction

Robert et al. 2022

Ground truth (unknown for experimental data)

AIRR model
parameters

Model
@ construction

AIRR generation
model

Realisation

AIRR dataset

Can we identify the parameters?

|

©,..0,—

AIRR models
parameters

[NERANNN]

Experimental
AIRR dataset

A High accuracy
A Have we learned the ground truth?

—_— E@J — 99% accuracy

Neural Network
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Conceptual problem:

reproducible AIRR ML

Published: 03 April 2017

Immunosequencing identifies signatures of
cytomegalovirus exposure history and HLA-
mediated effects on the T cell repertoire

Ryan O Emerson &, William S DeWitt, Marissa Vignali, Jenna Gravley, Joyce K Hu, Edward J Osborne,
Cindy Desmarais, Mark Kiinger, Christopher S Carlson, John A Hansen, Mark Rieder & Harlan S Robins.

Nature Genetics 49, 659-665(2017) | Cite this article

Article | Published: 07 November 2022
Predicting unseen antibodies’ neutralizability via
adaptive graph neural networks

Xuemei Zhang, Weifeng Wang, Hongyan Wu ), Lu Lu & & Shaoting Zhang &

Nature Machine Intelligence (2022) | Cite this article

Translational Science

Biophysicochemical Motifs in T-cell Receptor
Sequences Distinguish Repertoires from Tumor-
Infiltrating Lymphocyte and Adjacent Healthy Tissue

Jared Ostmeyer, Scott Christley, Inimary T. Toby, and Lindsay G. Cowell
DOL: 10.1158/0008-5472.CAN-18-2292 Published April 2019 #) crec xsstes

Predicting antigen specificity of single T cells
based on TCR CDR3 regions
David s Fischer, Yihan Wu, Benjamin Schubert, Fabian J Theis

Author Information
Mol Syst Biol (2020) 16: 9416 https:/doi.org/10.15252/msb.20199416

Vol.26,No.6 | rch Articls

DeepTCR: a deep learning fr k for under ing T-
cell p res within T-cell
repertoires

John-William Sidhom, © H. Benjamin Larman, Petra Ross-MacDonald,
Megan Wind-Rotolo, Drew M. Pardoll, & Alexander S. Baras
doi: hteps://doi.org/10.1101/464107

TITAN: T-cell receptor specificity prediction with
bimodal attention networks 3
Anna Weber &, Jannis Born, Maria Rodriguez Martinez =

Volume 37, Issue 1, July 2021, Pages i237-i244,
https://doi.org/10.1093/bioinformatics/btab294
Published: 12 July 2021

Attentive Cross-Modal Paratope Prediction

Andreea Deac (= Petar VeliCkovié, and Pietro Sormanni =)

Published Online: 6 Jun 2019 | https://doi.org/10.1089/cmb.2018.0175

Parapred: antibody paratope prediction using
convolutional and recurrent neural networks @
Edgar Liberis &, Petar Veli¢kovi¢, Pietro Sormanni &, Michele Vendruscolo, Pietro Lid

Bioinformatics, Volume 34, Issue 17, 01 September 2018, Pages 2944-2950,
https://doi.org/10.1093/bioinformatics/bty305

Mining adaptive immune receptor repertoires for
biological and clinical information using machine
learning

Victor Greiff, Gur Yaari 2 Lindsay G. Cowe

Modern Hopfield Networks and Attention for Inmune Repertoire Classification

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurlPS 2020)

Bbtexs Papers  Supplemental»

Authors

3 Lukas Gruber, Markus Holzleitner, Johannes
Brandstetter, Geir Kjetil Sandve, Victor Greitf, Sepp Hochreiter, Ginter Klambauer

Research artice | Open Access | Published: 28 May 2019
Capturing the differences between humoral immunity in the
normal and tumor environments from repertoire-seq of B-cell
receptors using supervised machine learning

irok Konishi,Daisuke Komura, Hiroto Katoh, Shiichiro Atsum,Hitatomo Koda, Asami Yemamoto, Yasuyuki Seto, Masashi
Fukayama, Rul Yamaguch, Seya Imoto & Shumelishikawa ©

BMC Bioinformatics 20, Artcle number: 267 (2019) | Cite tis artcle

‘ORIGINAL RESEARCH ARTICLE
Front Immunol_ 29 November 2019 | itps /o)

Detection of Enriched T Cell Epitope Specificity
in Full T Cell Receptor Sequence Repertoires

il =, st ittremi . Nicolas De Neuter',  Benson
Ogunjimiise’,  Kris Laukensi2* and  Pieter Meysman:2:*+

De novo prediction of cancer-associated T cell
receptors for noninvasive cancer detection

Daria Beshnova!, © Jianfeng Ye!, © Orealuwa Onabolu?, © Benjamin Moon’, Wenxin Zhenge, © Yang-Xin Fu™,
James Brugarolas?, Jayanthi Lea* and © Bo Li"5"

How can we make all these studies reproducible?
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Recommendations for
ML in biology

DOME: recommendations for supervised machine
learning validation in biology

Learning_Focus Group, Jennifer Harrow &, Fotis E. Psomopoulos & & Silvio C. E. Tosatto

Nature Methods 18, 1122-1127 (2021) \ Cite this article

Table 1| Supervised ML in biology: concerns, the consequences they impart and recommendations

Broad topic Be on the lookout for Consequences Recommendation(s)
Data o Inadequate data size & quality o Data not representative of domain e Use independent optimization (! ing) and
e Inappropriate partitioning, dependence application evaluation (testing) sets. This is especially
between train and test data o Unreliable or biased performance important for meta algorithms, where independence
o Class imbalance evaluation of multiple training sets must be shown to be
o No access to data o Cannot check data credibility independent of the evaluation (testing) sets.

© Release data, preferably using appropriate
long-term repositories, and include exact splits.

o Offer sufficient evidence of data size & distribution
being representative of the domain.

Optimization e Overfitting, underfitting and illegal ® Reported performance is too o Clarify that evaluation sets were not used for
parameter tuning optimistic or too pessimistic feature selection, prepr ing steps or p t:
o Imprecise parameters and protocols given e The model models noise or misses  tuning.
relevant relationships o Report indicators on training and testing data that
© Results are not reproducible can aid in assessing the possibility of under- or
overfitting; for example, train vs. test error.

o Release definitions of all algorithmic
hyperparameters, regularization protocols,
parameters and optimization protocol.

o For neural networks, release definitions of training
and learning curves.

o Include explicit model validation techniques, such as
N-fold cross-validation.

Model e Unclear if black box or interpretable model e An interpretable model shows no e Describe the choice of black box or interpretable
o No access to resulting source code, trained  explainable behavior model. If interpretable, show examples of
models & data e Cannot cross compare methods interpretable output.
® Execution time impractical & reproducibility, or check data © Release documented source code + models +
credibility executable + user interface/webserver + software
© Model takes too much time to containers.
produce results © Report execution time averaged across many
repeats. If computationally tough, compare to similar
methods.
Evaluation e Performance measures inadequate © Biased performance measures e Compare with public methods & simple models

o No comparisons to baselines or other

methods
o Highly variable performance

reported

e The method is falsely claimed as
state-of-the-art

e Unpredictable performance in
production

(baselines).

o Adopt ity-validated and
benct Kk d for evaluation

e Compare related methods and alternatives on the
same dataset.

o Evaluate performance on a final independent held-out
set.

o Use confidence intervals/error intervals and
statistical tests to gauge prediction robustness.

Key recommendations are bolded.



immuneML is a platform for development and transparent
comparative evaluation of AIRR-ML methods

Article | Published: 16 November 2021

The immuneML ecosystem for machine learning analysis of adaptive
immune receptor repertoires

Milena Pavlovi¢, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian L. M.

Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S. Al Hajj, Gabriel Balaban, Todd M. Brusko, Maria Chernigovskaya,

Scott Christley, Lindsay G. Cowell, Robert Frank, lvar Grytten, Sveinung Gundersen, Ingrid Hobaek Haff, Eivind Hovig, Ping-Han Hsieh

~+ Show authors

Gunter Klambauer, ... Geir Kjetil Sandve

Nature Machine Intelligence 3, 936-944 (2021) | Cite this article
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immuneML: an open-source
ecosystem for machine learning

analysis of adaptive immune receptor

repertoires

Try out in Galaxy

https://immuneml.uio.no
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Diagnosing diseases with AIRRs
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The causal inference framework

A Formally describes the data-generating process to discover causal effects between the
variables in the process, under a set of assumptions (Pearl 2009)

A Causal effect of X on Y: the difference in the value of Y while changing X and keeping all
other variables and conditions the same

Causality doesn’t matter [too much] for prediction tasks, but when
obtaining the data or applying methods to new populations, causality
can help formalize and solve challenges even in predictive settings
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The causal inference framework in the AIRR field

A A causal model for a viral infection
(different for different diseases)

environment

prior
immune
events

experimental
protocol

immune
genetics

immune state AIRR sequenced AIRR

HLA expression HLA type

Pavlovic et al. 2022
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The causal inference framework in the AIRR field

A A causal model for a viral infection
(different for different diseases)

[d  Selection bias:

A preferential selection of study participants

A spurious correlations: introduced,
removed, reversed

environment

—>®

prior
immune
events

experimental
protocol

immune
genetics

immune state AIRR sequenced AIRR

HLA expression HLA type

Pavlovic et al. 2022
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The causal inference framework in the AIRR field

A A causal model for a viral infection
(different for different diseases)

[d  Selection bias:

A preferential selection of study participants

A spurious correlations: introduced,
removed, reversed

A Confounding bias:

A influence both the immune state and AIRR

environment

—>®

age prior

immune
immune

events
genetics

experimental
protocol

immune state AIRR sequenced AIRR

HLA expression HLA type

Pavlovic et al. 2022
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The causal inference framework in the AIRR field

A A causal model for a viral infection
(different for different diseases)

[d  Selection bias:

A preferential selection of study participants

A spurious correlations: introduced,
removed, reversed

A Confounding bias:

A influence both the immune state and AIRR

A Batch effects & timing of measurement

environment

prior
immune
events

experimental
protocol

immune
genetics

immune state AIRR sequenced AIRR

HLA expression HLA type

Pavlovic et al. 2022
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e
Summary : 28

A AIRR ML # applying several fancy ML method to AIRR data
1 Complex biological structure (both receptors and repertoires)
A Large variability and sparsity
A Causal variables (sex, age, HLA etc)

[ AIRR ML methods should be benchmarked on both experimental and synthetic data
with known ground truth

A Ultimately we need large-scale experimental data with known ground truth
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