

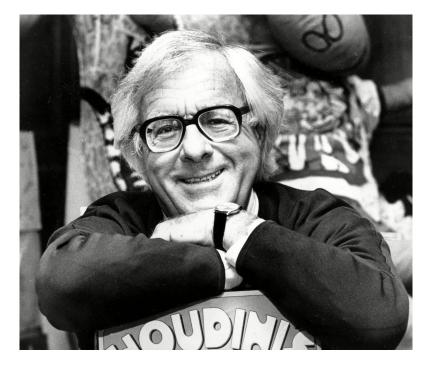
Machine learning for the analysis of adaptive immune receptors and repertoires

Maria Chernigovskaya mariiac@uio.no

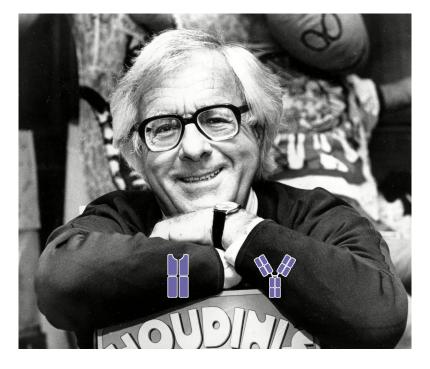
Milena Pavlović milenpa@uio.no

AIRR Community Webinar

November 15, 2022



"Life is trying things to see if they work." - Ray Bradbury



Machine learning for the analysis of adaptive immune receptors and repertoires

"Life is trying things to see if they work." - AIRR researches

Machine learning for the analysis of adaptive immune receptors and repertoires

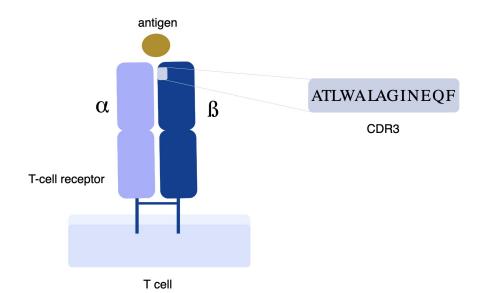
"Life is trying things to see if they work." - AIRR researches

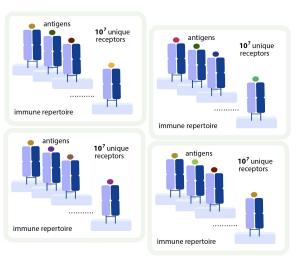
Or not?

Adaptive immune receptors (AIRs) and repertoires (AIRRs)

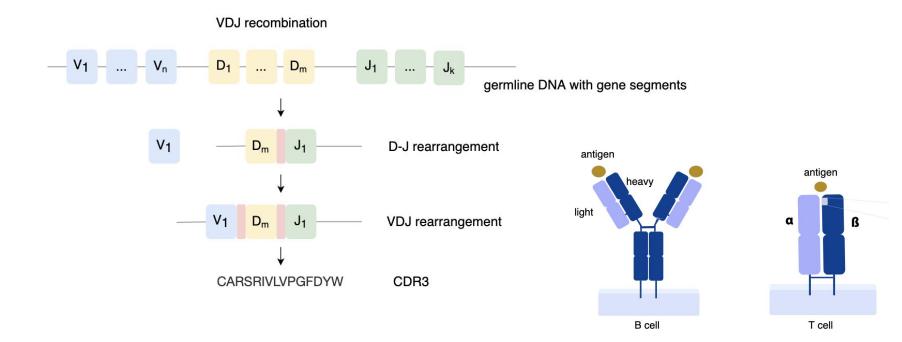
Adaptive immune receptors (AIRs)

□ Adaptive immune repertoires (AIRRs)



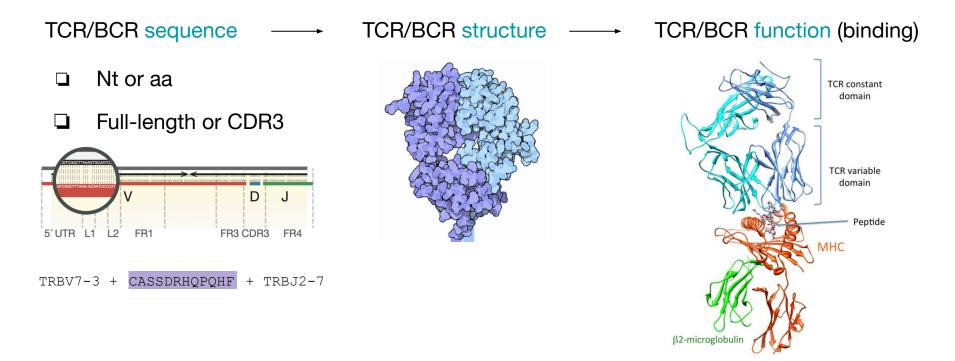


V(D)J recombination assembles AIRs (BCRs or TCRs)



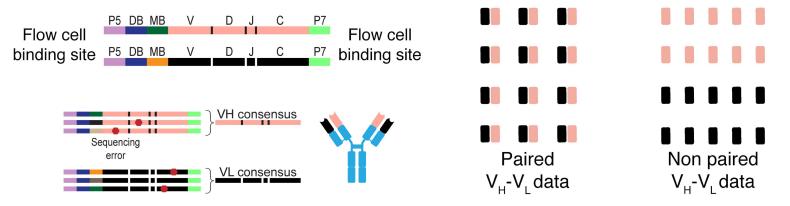
Alt et al. 1980, 1984, 1992, Bassing et al. 2000, 2002, Bareto et al. 2000, Schatz et al. 2012

Overview of AIRR data on the receptor level



Overview of AIRR data on the repertoire level

□ AIR-seq (Bulk or Single cell, with or without UMIs)

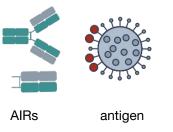


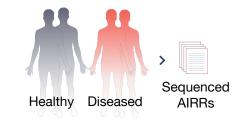
Benichou et al. 2012, Yaari et al. 2015, Brown et al. 2019

- Antibody repertoire proteomics (Cheung et al. 2012, Sato et al. 2012, Wine et al. 2015, Snapkov et al. 2021)
- Paired AIRs mapped to Ag specificity (Setliff et al. 2019, "A new way of exploring immunity" 2020)
- Paired AIRs + gene expression (Tu et al. 2019, Mathew et al. 2021, Shlesinger et al. 2022, Gao et al. 2022, Stephenson et al. 2021)

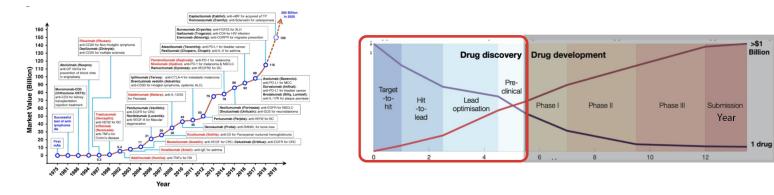
What immunological questions can we ask using AIRR data?

□ Can we use an immune repertoire for disease diagnostics?

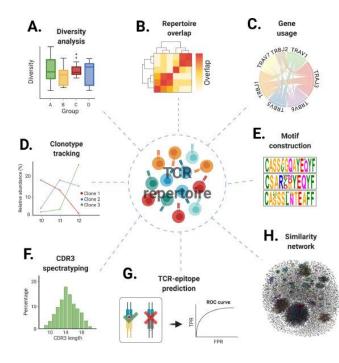


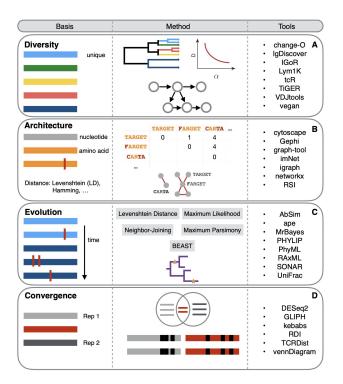


How can we improve vaccines/CAR-T/mAbs/other therapeutics design?

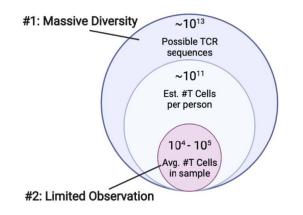


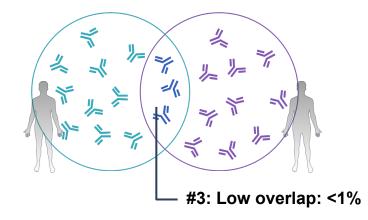
Some of these questions can be answered with various AIRR computational tools



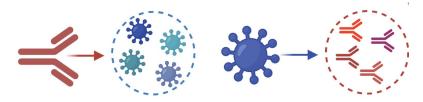


Challenges in computational analysis on AIRR data

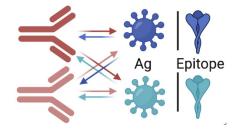




#4: Many-to-many binding



#5: Sequence similarity ≠ similar binding



Machine learning (ML) provides various approaches to detect signals in complex high-dimensional data

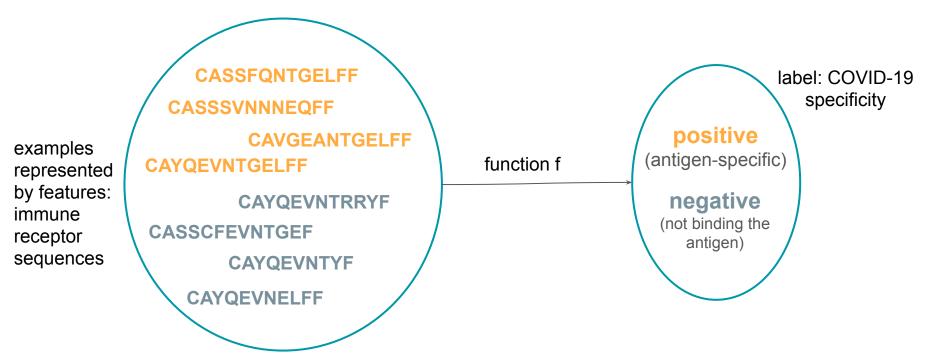
What is machine learning?

Machine learning (ML): a set of pattern recognition and function approximation techniques that find patterns within groups in (large amounts of) data

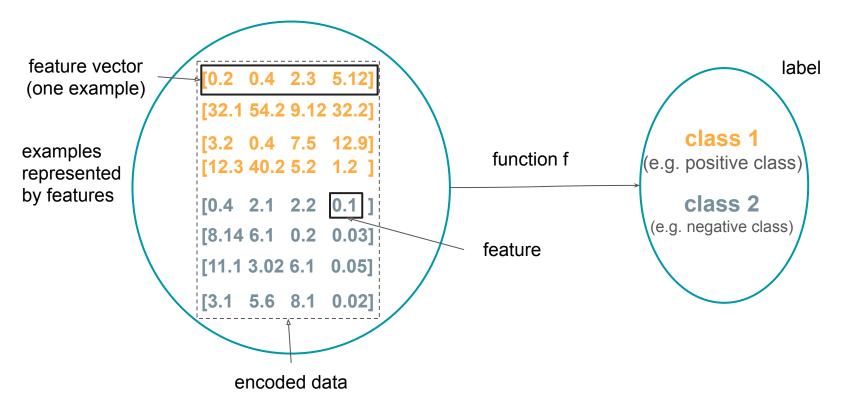
What is machine learning?

- Machine learning (ML): a set of pattern recognition and function approximation techniques that find patterns within groups in (large amounts of) data
- A set of methods that allow for making inferences about the data

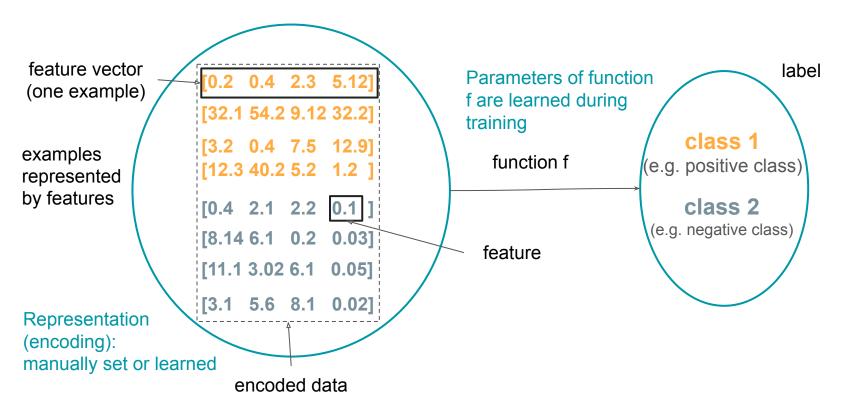
Machine learning as a function approximation task



Machine learning as a function approximation task



Machine learning as a function approximation task



Building predictive models

❑ Machine learning discovers statistical associations in the data → these associations enable good prediction

Building predictive models

- ❑ Machine learning discovers statistical associations in the data → these associations enable good prediction
- Aim: get a good predictive model, but also get biological insight
 - This is why we want the ML models to be interpretable

Building predictive models

- ❑ Machine learning discovers statistical associations in the data → these associations enable good prediction
- Aim: get a good predictive model, but also get biological insight
 This is why we want the ML models to be interpretable

□ Not causal relations, but starting points for further analyses

There is a surge in (AIRR) ML studies

Published: 03 April 2017

Immunosequencing identifies signatures of cytomegalovirus exposure history and HLAmediated effects on the T cell repertoire

Ryan O Emerson 🖂 William S DeWitt, Marissa Vignali, Jenna Gravley, Joyce K Hu, Edward J Osborne, Cindy Desmarais, Mark Klinger, Christopher S Carlson, John A Hansen, Mark Rieder & Harlan S Robins

Nature Genetics 49, 659-665(2017) | Cite this article

Article | Published: 07 November 2022

Predicting unseen antibodies' neutralizability via adaptive graph neural networks

Jie Zhang 🖂, Yishan Du, Pengfei Zhou, Jinru Ding, Shuai Xia, Qian Wang, Feiyang Chen, Mu Zhou, Xuemei Zhang, Weifeng Wang, Hongyan Wu 🗠, Lu Lu 🖂 & Shaoting Zhang 🖂

Nature Machine Intelligence (2022) Cite this article

DeepTCR: a deep learning framework for understanding Tcell receptor sequence signatures within complex T-cell repertoires

O John-William Sidhom, O H. Benjamin Larman, Petra Ross-MacDonald, Megan Wind-Rotolo, Drew M. Pardoll, O Alexander S. Baras doi: https://doi.org/10.1101/464107

TITAN: T-cell receptor specificity prediction with bimodal attention networks 3

Anna Weber 🖾, Jannis Born, María Rodriguez Martínez 🖾

Bioinformatics, Volume 37, Issue Supplement_1, July 2021, Pages i237-i244, https://doi.org/10.1093/bioinformatics/btab294 Published: 12 July 2021

Translational Science

Biophysicochemical Motifs in T-cell Receptor Sequences Distinguish Repertoires from Tumor-Infiltrating Lymphocyte and Adjacent Healthy Tissue

Jared Ostmeyer, Scott Christley, Inimary T. Toby, and Lindsay G. Cowell DOI: 10.1158/0008-5472.CAN-18-2292 Published April 2019 Octeck tor updates

Predicting antigen specificity of single T cells based on TCR CDR3 regions

David S Fischer, Yihan Wu, Benjamin Schubert, Fabian J Theis

Author Information Mol Syst Biol (2020) 16: e9416 | https://doi.org/10.15252/msb.20199416

Journal of Computational Biology, Vol. 26, No. 6 | Research Articles

Attentive Cross-Modal Paratope Prediction

Andreea Deac 🖂 Petar VeliČković, and Pietro Sormanni 🖂

Published Online: 6 Jun 2019 | https://doi.org/10.1089/cmb.2018.0175

Parapred: antibody paratope prediction using convolutional and recurrent neural networks @

Edgar Liberis 🕿, Petar Veličković, Pietro Sormanni 🗷, Michele Vendruscolo, Pietro Liò

Bioinformatics, Volume 34, Issue 17, 01 September 2018, Pages 2944–2950, https://doi.org/10.1093/bioinformatics/bty305

Mining adaptive immune receptor repertoires for biological and clinical information using machine learning

Victor Greiff¹, Gur Yaari ², Lindsay G. Cowell ³ A ⊠

Modern Hopfield Networks and Attention for Immune Repertoire Classification

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex » Paper » Supplemental »

Authors

Michael Widrich, Bernhard Schäfl, Milena Pavlović, Hubert Ramsauer, Lukas Gruber, Markus Holzleitner, Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, Günter Klambauer

Research article | Open Access | Published: 28 May 2019

Capturing the differences between humoral immunity in the normal and tumor environments from repertoire-seq of B-cell receptors using supervised machine learning

Hiroki Konishi, Daisuke Komura, Hiroto Katoh, Shinichiro Atsumi, Hirotomo Koda, Asami Yamamoto, Yasuyuki Seto, Masashi Eukayama, Rui Yamaguchi, Seiya Imoto & Shumpei Ishikawa 🖂

BMC Bioinformatics 20, Article number: 267 (2019) Cite this article

ORIGINAL RESEARCH ARTICLE

Front. Immunol., 29 November 2019 | https://doi.org/10.3389/fimmu.2019.02820

Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor Sequence Repertoires

Sofie Gielis^{1,2,3}, Pieter Moris^{1,3,4}, Wout Bittremieux^{1,3,4,4}, Nicolas De Neuter^{1,2,3}, Benson Ogunjimi^{2,5,4,7}, Kris Laukens^{1,2,3,4} and Pieter Meysman^{1,2,3,4}

De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection

Daria Beshnova¹, ⁽⁶⁾ Jianfeng Ye¹, ⁽⁵⁾ Oreoluwa Onabolu², ⁽⁶⁾ Benjamin Moon³, Wenxin Zheng⁴, ⁽⁶⁾ Yang-Xin Fu^{3,5}, ⁽⁶⁾ James Brugarolas², Jayanthi Lea⁴ and ⁽⁶⁾ Bo Li^{1,5,*}

¹uga Hill Department of Bioinformatics, UT Southwestern Medical Contre, Dallas, TX 75390, USA. ²Department of Instantial Medicine, UT Southwestern Medical Contre, Dallas, TX 75390, USA. ³Department of Pathology, UT Southwestern Medical Contre, Dallas, TX 75390, USA. ⁴Department of Detections and Greecology, UT Southwestern Medical Contre, Dallas, TX 75390, USA. ⁴Department of Instantion, UT Southwestern Medical Contre, Dallas, TX 75390, USA.

Corresponding author, Email: bo.li@utsoutr
 Hide authors and affiliations

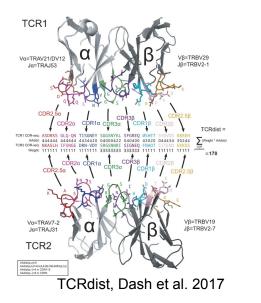
Science Translational Medicine 19 Aug 2020: Vol. 12, Issue 557, eaaz3738 DOI: 10.1126/scitransImed.aaz3738

+ Many more! 21

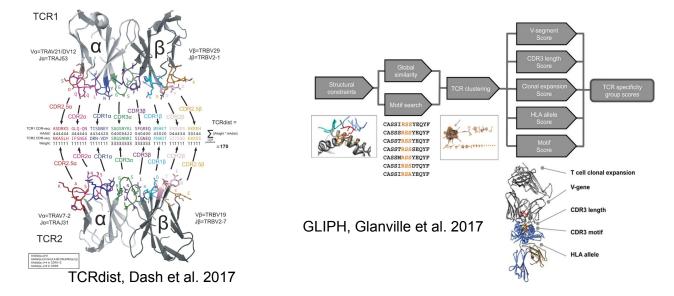
ML application areas in AIRR analyses

Examining sequence similarity:

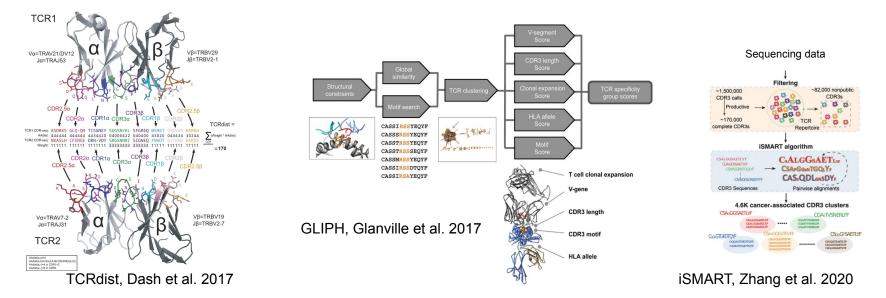
Examining sequence similarity:



Examining sequence similarity:



Examining sequence similarity:



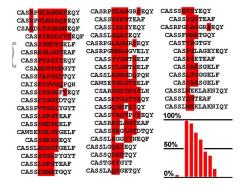
- Discovering short motifs in the sequence that are indicative of its specificity
- □ Predictions made based on physicochemical properties of receptors

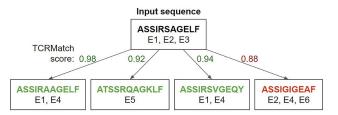
CASRPGLAGGRPEQY	CASRP <mark>GLAG</mark> GR <mark>P</mark> E	QY CASSS	SYEQY
CASEPGIMSAOPEOY	CASSWSFGTEAF	CASS	QGTEAF
CSARDLTSGANNEOF	CASSIRSSYEQY	CASRPG	AGGRPEQY
CASRYRDDSYNEOF	CASSLGQAYEQY	CASSE	IMA TGQY
CASS SWDTGELF	CASRPGLAGGRPEQ	Y CAST	HGTGY
CASREGLGGTEAF	CASRPGWMAGGVEL	Y CAS	GLAGEYEQY
CASSPISGIYEQY	CASS <mark>YVGN</mark> TGEL	F CAS	GETEAF
CSARDGTGNGYT	CASS <mark>YLGN</mark> TGEL	F CAS	ARSGELF
CASSVAPGSDTOY	CASSL <mark>RGRG</mark> DQPQ	H CASS	TG GGELF
CAISEVGVGOPOH	CAWSETGLGTGEL	F CAS	SARSGELF
CASSYPGGGFYEOY	CSAR <mark>GGSYNSP</mark> L	H CASSL	EKLAKNIQY
CASSFIGGTDTOY	CASSRTGSTYEQ	Y CASSY	<mark>GTEAF</mark>
CASSP <mark>VTGGI</mark> YGYT	CASG <mark>QGN</mark> FDIQY	CASSL	<mark>e klakniqy</mark>
CASSLSFGTEAF	CASS <mark>VAGT</mark> PSYE	QY 100%	
CASSSWDTGELF	CASR <mark>EGL</mark> GGTEA	F	
CAWSETGLGTGELF	CASS <mark>NR</mark> G <mark>LGT</mark> DT	QY	
CAS <mark>SGASH</mark> EQY	CASSL <mark>E</mark> GG <mark>YY</mark> NEQ	F	
CASSLRDGYTGELF	CAS SLG <mark>QAY</mark> EQY	50%	III.——
CASS <mark>STGL</mark> PYGYT	CASSQ <mark>DRD</mark> TQY		
CASS <mark>LSFG</mark> TEAF	CASTG <mark>SY</mark> GYT		
CASS <mark>FNMA</mark> TGQY	CAS SLA <mark>QG</mark> GETQY	0%_	
		370	

CDR3 from X-ray structures aligned by contact sites

Ostmeyer et al. 2019

- Discovering short motifs in the sequence that are indicative of its specificity
- Predictions made based on physicochemical properties of receptors

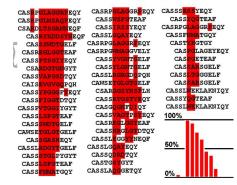


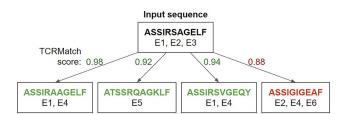


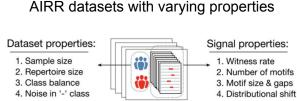
Ostmeyer et al. 2019

Chronister et al. 2021

- Discovering short motifs in the sequence that are indicative of its specificity
- Predictions made based on physicochemical properties of receptors





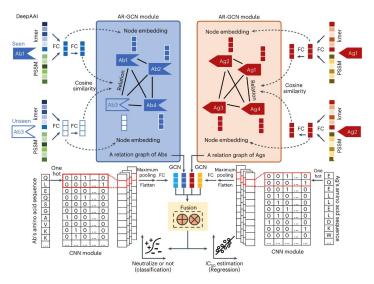


Ostmeyer et al. 2019

Chronister et al. 2021

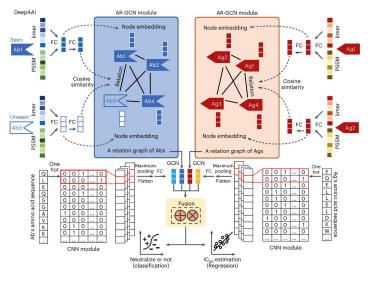
Kanduri et al. 2022

Modeling antibody-antigen interactions



Zhang et al. 2022

Modeling antibody-antigen interactions



Zhang et al. 2022

Using structural information

DeepAIR: a deep-learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis

Yu Zhao, ⁽¹⁾ Bing He, ⁽²⁾ Chen Li, Zhimeng Xu, Xiaona Su, Jamie Rossjohn, ⁽²⁾ Jiangning Song, Jianhua Yao **doi:** https://doi.org/10.1101/2022.09.30.510251

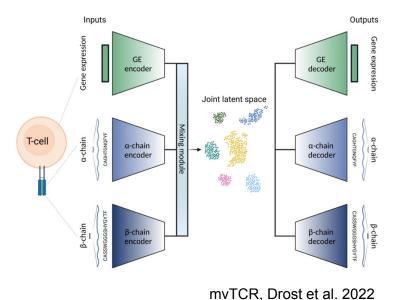
DLAB: deep learning methods for structure-based virtual screening of antibodies $\hat{\circ}$

Constantin Schneider, Andrew Buchanan, Bruck Taddese, Charlotte M Deane 💌

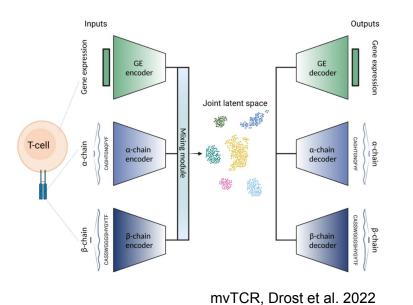
Bioinformatics, Volume 38, Issue 2, 15 January 2022, Pages 377–383, https://doi.org/10.1093/bioinformatics/btab660 Published: 21 September 2021 Article history ▼

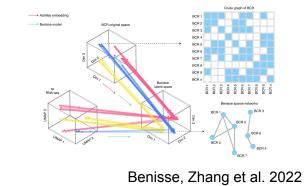
Learning a latent representation using sequence and gene expression data

Learning a latent representation using sequence and gene expression data

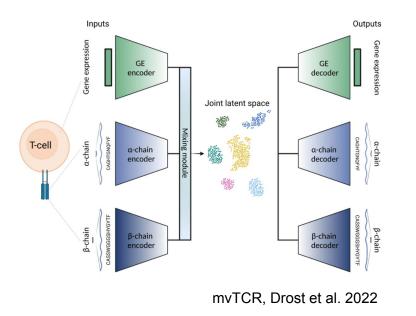


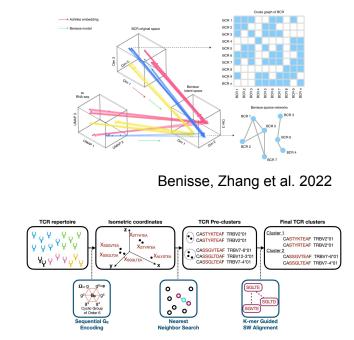
Learning a latent representation using sequence and gene expression data





Learning a latent representation using sequence and gene expression data





GIANA, Zhang et al. 2021

Predicting the 3D structure of AIRs

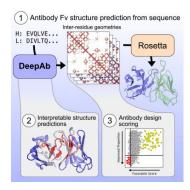
Antibody-specific methods achieve better prediction performance than generic protein structure prediction tools

ABlooper, Abanades et al. 2022

Predicting the 3D structure of AIRs

Antibody-specific methods achieve better prediction performance than generic protein structure prediction tools

ABlooper, Abanades et al. 2022

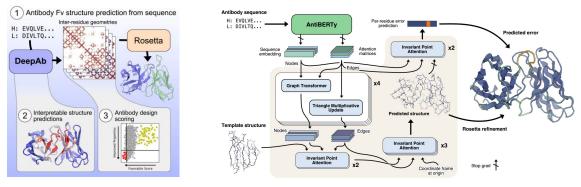


DeepAb, Ruffolo et al. 2022

Predicting the 3D structure of AIRs

Antibody-specific methods achieve better prediction performance than generic protein structure prediction tools

ABlooper, Abanades et al. 2022

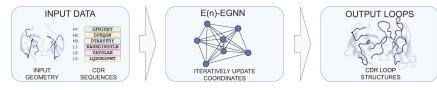


DeepAb, Ruffolo et al. 2022

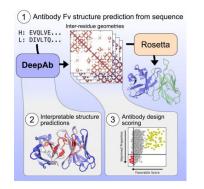
IgFold, Ruffolo et al. 2022

Predicting the 3D structure of AIRs

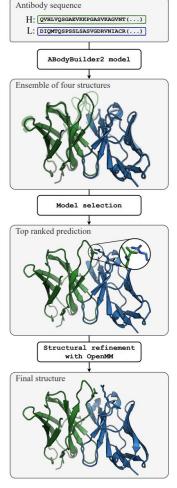
Antibody-specific methods achieve better prediction performance than generic protein structure prediction tools



ABlooper, Abanades et al. 2022







DeepAb, Ruffolo et al. 2022

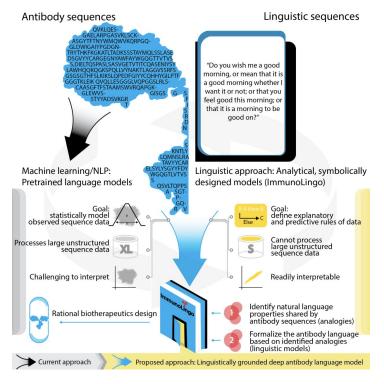
IgFold, Ruffolo et al. 2022

ImmuneBuilder, Abanades et al. 2022

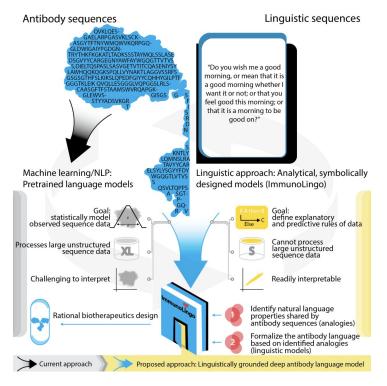
Some of the previous models are based on language models

- Some of the previous models are based on language models
- Necessary to formalize the "antibody language"

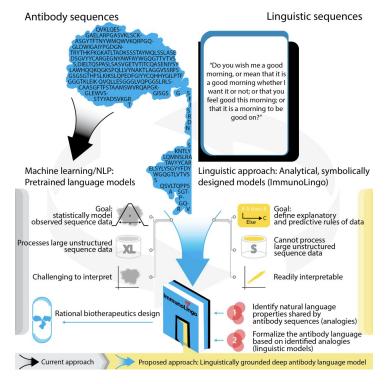
- Some of the previous models are based on language models
- Necessary to formalize the "antibody language"



- Some of the previous models are based on language models
- Necessary to formalize the "antibody language"
- Improved interpretability through formalization



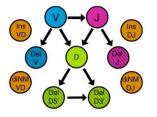
- Some of the previous models are based on language models
- Necessary to formalize the "antibody language"
- Improved interpretability through formalization
- Potential aim: therapeutics design



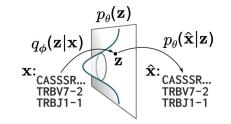
Generative models for AIRs

Generative models for AIRs

□ Modeling the VDJ recombination process (naive AIRs)



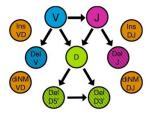
IGoR, Marcou et al. 2018, doi:10.1038/s41467-018-02832-w



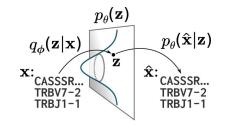
Davidsen et al. 2019, doi: 10.7554/eLife.46935

Generative models for AIRs

Modeling the VDJ recombination process (naive AIRs)

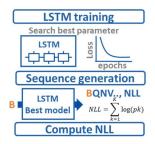


IGoR, Marcou et al. 2018, doi:10.1038/s41467-018-02832-w



Davidsen et al. 2019, doi: 10.7554/eLife.46935

Modeling antigen-specific antibodies directly



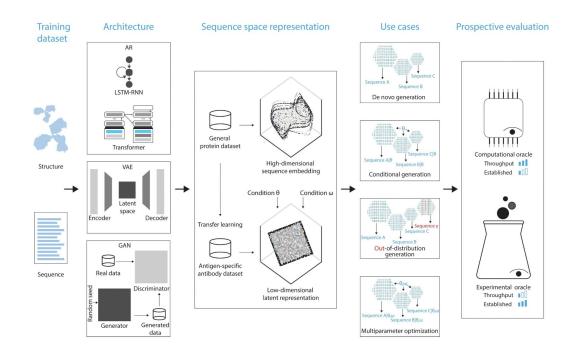
Saka et al. 2021, doi: 10.1038/s41598-021-85274-7



Shan et al. 2022, doi: 10.1073/pnas.2122954119

Antibody design with machine learning

- Epitope specificity, affinity and developability
- Public repositories:
 iReceptor, IEDB, AbDb,
 AgAbDb
- Synthetic data: Absolut!



Review: Akbar et al. 2022, 48 doi:10.1080/19420862.2021.2008790

TCRs and peptide-MHC complexes

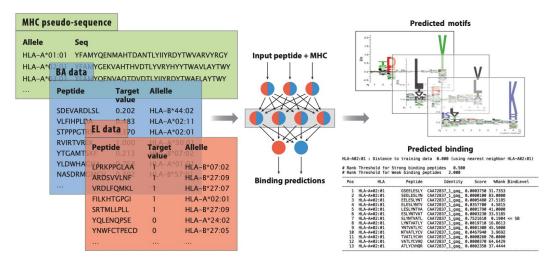
□ For TCRs to recognize a peptide, it has to be presented by the MHC complex

TCRs and peptide-MHC complexes

- □ For TCRs to recognize a peptide, it has to be presented by the MHC complex
- Tasks: predicting peptide-MHC binding, predicting the binding of a TCR to pMHC complex

TCRs and peptide-MHC complexes

- □ For TCRs to recognize a peptide, it has to be presented by the MHC complex
- Tasks: predicting peptide-MHC binding, predicting the binding of a TCR to pMHC complex



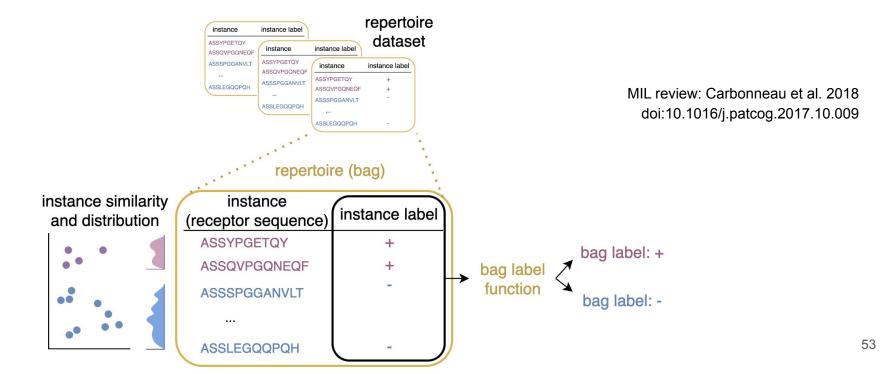
NNAlign in the review by Nielsen et al. 2020, doi:10.1146/annurev-biodatasci-021920-100259

Diagnosing immune-related diseases with AIRRs

□ Repertoire classification is a multiple instance learning (MIL) problem

Diagnosing immune-related diseases with AIRRs

□ Repertoire classification is a multiple instance learning (MIL) problem



Custom ML approaches for diagnostics

Published: 03 April 2017

Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire

Rvan O Emerson 🖂, William S DeWitt, Marissa Vignali, Jenna Gravley, Joyce K Hu, Edward J Osborne, Cindy Desmarais, Mark Klinger, Christopher S Carlson, John A Hansen, Mark Rieder & Harlan S Robins

Nature Genetics 49, 659-665 (2017) Cite this article

Article Open Access Published: 11 March 2021

DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires

John-William Sidhom Z, H. Benjamin Larman, Drew M. Pardoll & Alexander S. Baras

Nature Communications 12, Article number: 1605 (2021) Cite this article

[Submitted on 9 Aug 2022]

Multiple Instance Neural Networks Based on Sparse Attention for Cancer Detection using T-cell Receptor Sequences

Younghoon Kim, Tao Wang, Danyi Xiong, Xinlei Wang, Seongoh Park

Cite as: arXiv:2208.04524 [stat.ML] (or arXiv:2208.04524v1 [stat.ML] for this version) https://doi.org/10.48550/arXiv.2208.04524 ①

Modern Hopfield Networks and Attention for Immune Repertoire Classification

Michael Widrich, Bernhard Schäfl, Hubert Ramsauer, Milena Pavlović, Lukas Gruber, Markus Holzleitner, Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, Günter Klambauer

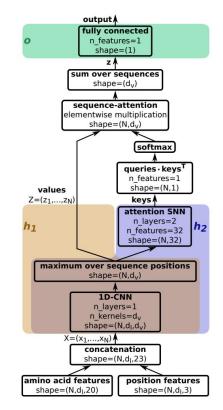
Cite as: arXiv:2007.13505 [cs.LG] (or arXiv:2007.13505 [cs.LG] for this version) https://doi.org/10.48550/arXiv.2007.13505 ① Journal reference dvances in Overal Information Processing Systems 33 (NeurIPS 2020)

Biophysicochemical Motifs in T-cell Receptor Sequences Distinguish Repertoires from Tumor-Infiltrating Lymphocyte and Adjacent Healthy Tissue 🕮

Jared Ostmeyer (20); Scott Christley; Inimary T. Toby; Lindsay G. Cowell *Cancer Res* (2019) 79 (7): 1671–1680. https://doi.org/10.1158/0008-5472.CAN-18-2292 Article history ©

Disease diagnostics using machine learning of immune receptors

Maxim E. Zaslavsky, No. Nikhil Ram-Mohan, Solel M. Guthridge, Solar T. Merrill, Solaron D. Goldman,
 Ji-Yeun Lee, Kirshna M. Roskin, Charlotte Cunningham-Rundles, M. Anthony Moody,
 Barton F. Haynes, Benjamin A. Pinsky, Solaros R. Heath, Ujudith A. James, Samuel Yang,
 Catherine A. Blish, Robert Tibshirani, Anshul Kundaje, Soct D. Boyd
 doi: https://doi.org/10.1101/2022.04.26.489314

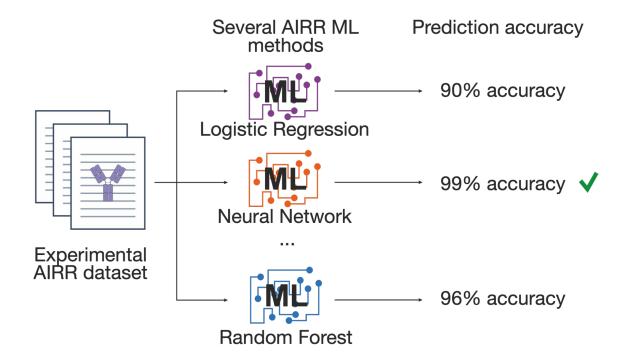


DeepRC, Widrich et al. 2020

Different ML methods have different underlying assumptions – those should be conscious choices to reflect the problem domain

How do we ensure that the method can be applied to unseen receptors or repertoires? (generalizability of ML methods)

A naive way to perform AIRR ML

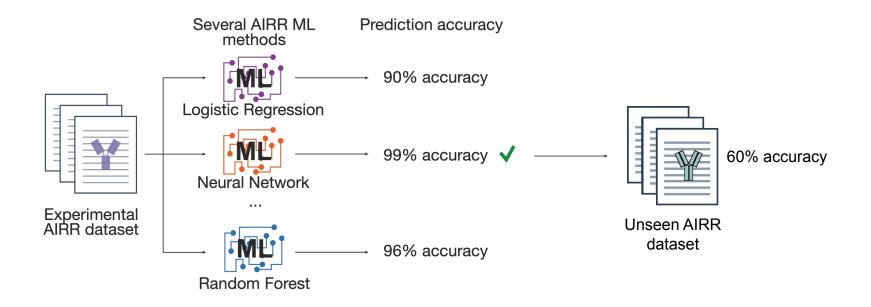


Experimental data challenges in method development

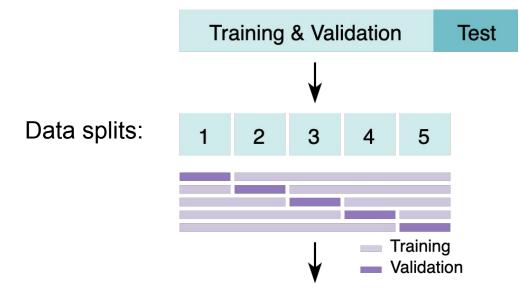
Usually small dataset size

- One of the largest AIRR studies: Liu et al., 2019 877 repertoires, 18 million unique TCRs, Snyder et al., 2020 — 1815 covid TCR repertoires + 3500 controls
- □ Is the dataset representative? Performance estimation problems
- Available only for one particular problem setup
 - □ What if the data was a bit different? Sensitivity estimation problem
- No ground truth information
 - □ What was learned? Generalizability problem

Will our ML method also work good on an unseen data?

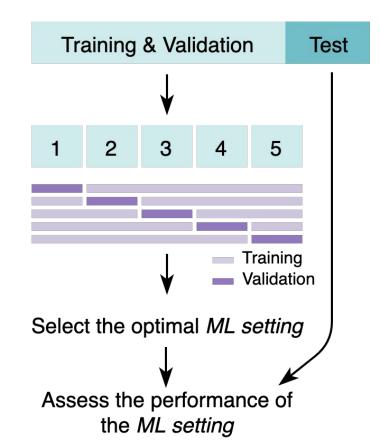


Nested cross validation might improve generalizability

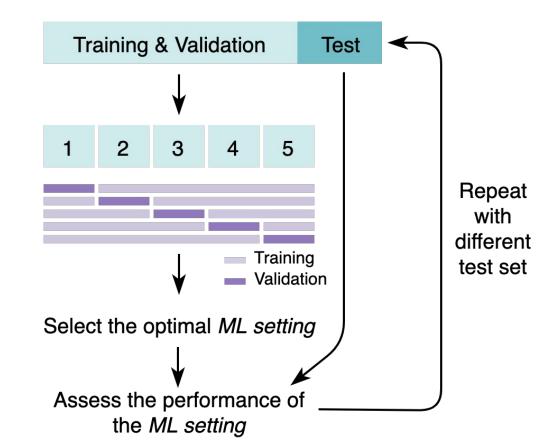


Select the optimal *ML setting*

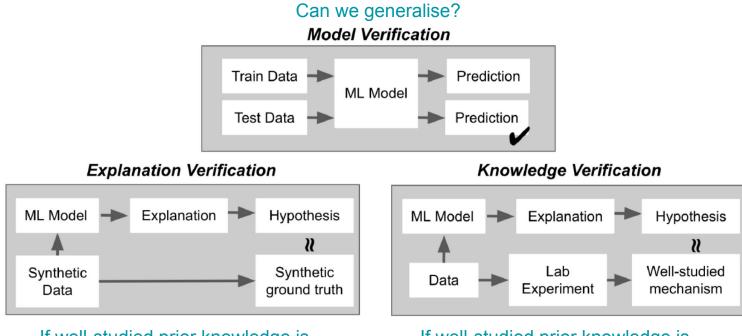
Nested cross validation might improve generalizability



Nested cross validation might improve generalizability



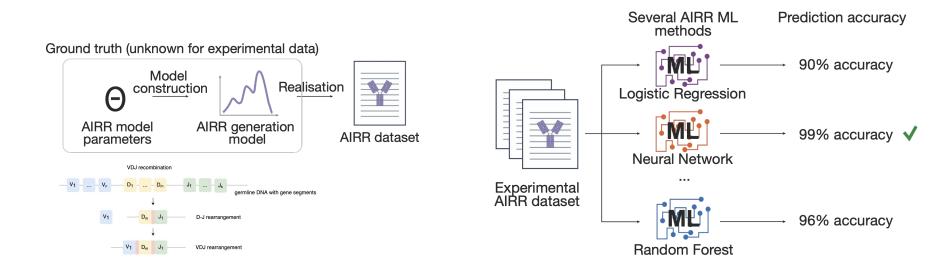
There are several levels of ML verification



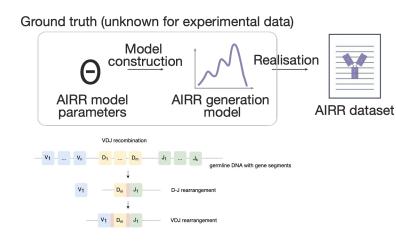
If well-studied prior knowledge is **not** available

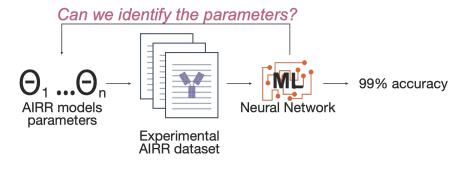
If well-studied prior knowledge is available

What can be a prior knowledge in AIRR case?



AIRR ML methods should be also benchmarked on ground truth synthetic AIRR data

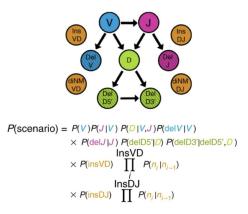




- High accuracy
- □ Have we learned the ground truth?

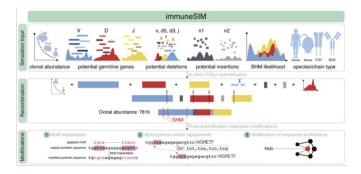
Current VDJ simulation frameworks have pros and cons

□ IGoR (nt) / OLGA (aa) (Marcou et al. 2017)



- + Accurate VDJ recombination model
- + Generation probability evaluation
- + Fast (generates 100k seqs in 5 min)
- No signal embedding
- One dataset per one run

immuneSIM (Weber et al. 2020)

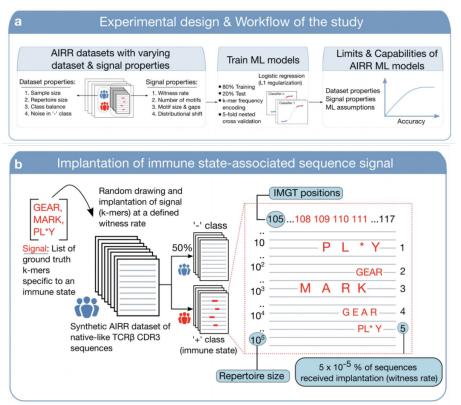


- + Basic signal implantation (gapped k-mers)
- + Simulates clonal abundances
- + Productive receptors
- Slow (100k seqs in 1 hour)
- No generation model and generation probabilities
- One dataset per one run

Profiling AIRR ML models on a range of basic datasets

- OLGA TCRβ CDR3 sequences (aa) + implanted gapped 2—5-mers
- Identified parameter boundaries where baseline methods (Logistic Regression) already achieve high accuracy

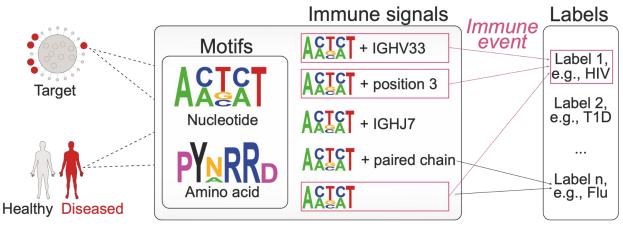
Immune signal can be more complex!



Definition of immune event and immune signal

We hypothesise that immune signal should be a substring of the receptor:

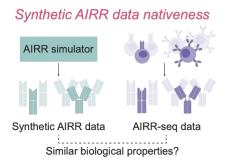
- Gapped) k-mer (Akbar et al., 2021)
- □ Full-length receptor (Emerson et al., 2017)
- □ Motif (PWM with a fixed length)
- \Box The most general definition: immune signal is a function: AIR \rightarrow True/False



Chernigovskaya, unpublished

A universal AIRR simulator wishlist

□ Challenges in AIRR simulator development



Overlapping signals

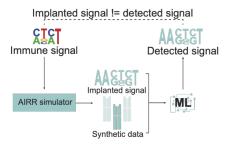
Sequence level

Signal 1 Signal 2 Signal 3 IGHV30 + CASSIMMIEKLAKENEQY + IGHJ5

Repertoire level

```
CASSIMMIRKKALENEQY
CASSIMMIEAKELANEQY
CASSIMMIEAKELANEQY
CASSIMMIEKLAKENEQY
CASSIMCAWEKLAKENEQY
CASSIMCIEKLAKENEQY
CASSIMCIEKLAKENEQY
CASSCHMCPKLAKENEQY
```

Introducing simulation artifacts



Properties of a universal AIRR simulator

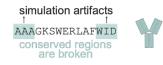
Similar biological statistics distributions

AIRR-seq data statistics, e.g. Pgen

Synthetic AIRR data statistics, e.g. Pgen

Chernigovskaya, unpublished

Does not break biological properties of AIRR data

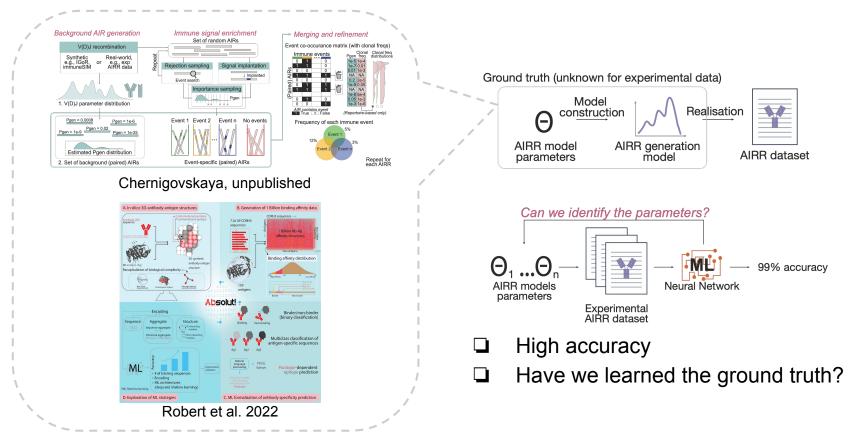


Can simulate signal of varying complexity

def signal: v_gene = IGHV33; CDR3 contains motif (A/C)RRR; motif position in the CDR3 = 4 or 6; CDR3 length = 12AA;

. . .

Framework for simulating a "native"-like AIR(R) datasets



Conceptual problem: reproducible AIRR ML

Published: 03 April 2017

Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire

Ryan O Emerson 🖂, William S DeWitt, Marissa Vignali, Jenna Gravley, Joyce K Hu, Edward J Osborne, Cindy Desmarais, Mark Klinger, Christopher S Carlson, John A Hansen, Mark Rieder & Harlan S Robins

Nature Genetics 49, 659-665(2017) | Cite this article

Article Published: 07 November 2022

Predicting unseen antibodies' neutralizability via adaptive graph neural networks

Jie Zhang 🖂 Yishan Du, Pengfei Zhou, Jinru Ding, Shuai Xia, Qian Wang, Felyang Chen, Mu Zhou, Xuemei Zhang, Welfeng Wang, Hongyan Wu 🖾, Lu Lu 🖂 & Shaoting Zhang 🖂

Nature Machine Intelligence (2022) Cite this article

DeepTCR: a deep learning framework for understanding Tcell receptor sequence signatures within complex T-cell repertoires

Sohn-William Sidhom, ¹⁰ H. Benjamin Larman, Petra Ross-MacDonald, Megan Wind-Rotolo, Drew M. Pardoll, ¹⁰ Alexander S. Baras doi: https://doi.org/10.1101/464107

TITAN: T-cell receptor specificity prediction with bimodal attention networks 3 Anna Weber 🕿 , Jannis Born, María Rodríguez Martínez 🕿

Bioinformatics, Volume 37, Issue Supplement_1, July 2021, Pages i237-i244, https://doi.org/10.1093/bioinformatics/btab294 Published: 12 July 2021

Translational Science

Biophysicochemical Motifs in T-cell Receptor Sequences Distinguish Repertoires from Tumor-Infiltrating Lymphocyte and Adjacent Healthy Tissue

Jared Ostmeyer, Scott Christley, Inimary T. Toby, and Lindsay G. Cowell
DOI: 10.1158/0008-5472.CAN-18-2292 Published April 2019
Creck to automatic

Predicting antigen specificity of single T cells based on TCR CDR3 regions

David S Fischer, Yihan Wu, Benjamin Schubert, Fabian J Theis

Author Information Mol Syst Biol (2020) 16: e9416 https://doi.org/10.15252/msb.20199416

Journal of Computational Biology, Vol. 26, No. 6 | Research Articles

Attentive Cross-Modal Paratope Prediction

Andreea Deac 🖂 Petar VeliČković, and Pietro Sormanni 🖂

Published Online: 6 Jun 2019 https://doi.org/10.1089/cmb.2018.0175

Parapred: antibody paratope prediction using convolutional and recurrent neural networks @ Edgar Liberis @ Petar Veličković. Pietro Sormanni @ Michele Vendruscolo, Pietro Liò

Bioinformatics, Volume 34, Issue 17, 01 September 2018, Pages 2944–2950, https://doi.org/10.1093/bioinformatics/bty305

Mining adaptive immune receptor repertoires for biological and clinical information using machine learning

Victor Greiff¹, Gur Yaari², Lindsay G. Cowell ³ A ⊠

Modern Hopfield Networks and Attention for Immune Repertoire Classification

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex » Paper » Supplemental »

Authors

Michael Widrich, Bernhard Schäfl, Milena Pavlović, Hubert Ramsauer, Lukas Gruber, Markus Holzleitner, Johannes Brandstetter, Geir Kjetiï Sandve, Victor Greiff, Sepp Hochreiter, Günter Klambauer

Research article | Open Access | Published: 28 May 2019

Capturing the differences between humoral immunity in the normal and tumor environments from repertoire-seq of B-cell receptors using supervised machine learning

Hiroki Konishi, Daisuke Komura, Hiroto Katoh, Shinichiro Atsumi, Hirotomo Koda, Asami Yamamoto, Yasuyuki Seto, Masashi Eukayama, Bul Yamaguchi, Seiya Imoto & Shumpei Ishikawa 🗁

BMC Bioinformatics 20, Article number: 267 (2019) Cite this article

ORIGINAL RESEARCH ARTICLE

Front. Immunol., 29 November 2019 | https://doi.org/10.3389/fimmu.2019.02820

Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor Sequence Repertoires

Sofie Gielis¹²³, Pieter Moris¹³¹, Wout Bittremieux¹³⁴¹, Nicolas De Neuter¹²³, Benson Ogunjimi²⁵⁰⁷, Kris Laukens¹²³¹ and Pieter Meysman¹²³¹

De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection

© Daria Beshnova¹, © Jianfeng Ye¹, © Oreoluwa Onabolu², © Benjamin Moon², Wenxin Zheng⁴, © Yang-Xin Fu^{3,5}, © James Brugarolas², Jayanthi Lea⁴ and © Bo Li^{1,5,*}

¹Japh AHD Department of Bioinformatics, UT-Southwestein Medical Centre, Dallis, JT 72370, USA. ¹Papartment of Internet Medicisus, UT 23 analysistem Medical Centre (Julis, JT 72370, USA. ²Papartment of Pathology, UT Submestein Medical Centre, Dallis, JT 72370, USA. ¹Papartment of Destruction and Synochogy Coll Submestein Medical Centre, Dallis, JT 72570, USA. ¹Papartment of Osternational Centre (Julis, JT 72570, USA. ¹Papartment of Destruction and Synochogy Coll Submestein Medical Centre, Dallis, JT 72570, USA.

Science Translational Medicine 19 Aug 2020 Vol. 12, Issue 557, eaaz3738 DOI: 10.1126/scitranslmed.aaz3738

How can we make all these studies reproducible?

Recommendations for ML in biology

DOME: recommendations for supervised machine learning validation in biology

Ian Walsh, Dmytro Fishman, Dario Garcia-Gasulla, Tiina Titma, Gianluca Pollastri, ELIXIR Machine Learning Focus Group, Jennifer Harrow ⊠, Fotis E. Psomopoulos ⊠ & Silvio C. E. Tosatto ⊠

Nature Methods 18, 1122–1127 (2021) Cite this article

Table 1 | Supervised ML in biology: concerns, the consequences they impart and recommendations

Broad topic	Be on the lookout for	Consequences	Recommendation(s)
Data	 Inadequate data size & quality Inappropriate partitioning, dependence between train and test data Class imbalance No access to data 	 Data not representative of domain application Unreliable or biased performance evaluation Cannot check data credibility 	 Use independent optimization (training) and evaluation (testing) sets. This is especially important for meta algorithms, where independence of multiple training sets must be shown to be independent of the evaluation (testing) sets. Release data, preferably using appropriate long-term repositories, and include exact splits. Offer sufficient evidence of data size & distribution being representative of the domain.
Optimization	 Overfitting, underfitting and illegal parameter tuning Imprecise parameters and protocols given 	 Reported performance is too optimistic or too pessimistic The model models noise or misses relevant relationships Results are not reproducible 	 Clarify that evaluation sets were not used for feature selection, preprocessing steps or parameter tuning. Report indicators on training and testing data that can aid in assessing the possibility of under- or overfitting; for example, train vs. test error. Release definitions of all algorithmic hyperparameters, regularization protocols, parameters and optimization protocol. For neural networks, release definitions of training and learning curves. Include explicit model validation techniques, such as N-fold cross-validation.
Model	 Unclear if black box or interpretable model No access to resulting source code, trained models & data Execution time impractical 	 An interpretable model shows no explainable behavior Cannot cross compare methods & reproducibility, or check data credibility Model takes too much time to produce results 	Describe the choice of black box or interpretable model. If interpretable, show examples of interpretable output. Release documented source code + models + executable + user interface/webserver + software containers. Report execution time averaged across many repeats. If computationally tough, compare to similar methods.
Evaluation	 Performance measures inadequate No comparisons to baselines or other methods Highly variable performance 	 Biased performance measures reported The method is falsely claimed as state-of-the-art Unpredictable performance in production 	 Compare with public methods & simple models (baselines). Adopt community-validated measures and benchmark datasets for evaluation. Compare related methods and alternatives on the same dataset. Evaluate performance on a final independent held-out set. Use confidence intervals/error intervals and statistical tests to gauge prediction robustness.

Key recommendations are bolded

ImmuneML is a platform for development and transparent comparative evaluation of AIRR-ML methods

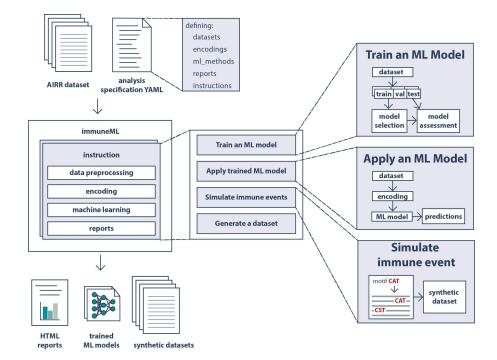
Article Published: 16 November 2021

The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires

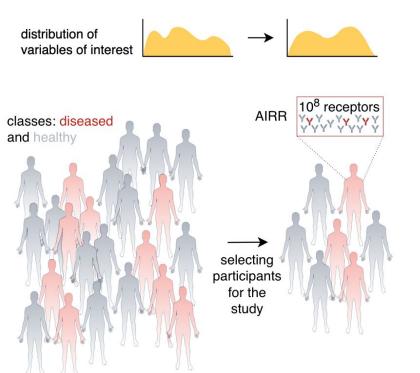
Milena Pavlović, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian L. M. Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S. Al Haji, Gabriel Balaban, Todd M. Brusko, Maria Chernigovskaya, Scott Christley, Lindsay G. Cowell, Robert Frank, Ivar Grytten, Sveinung Gundersen, Ingrid Hobæk Haff, Eivind Hovig, Ping-Han Hsieh, Günter Klambauer, ... Geir Kjetil Sandve 🖂 + Show authors

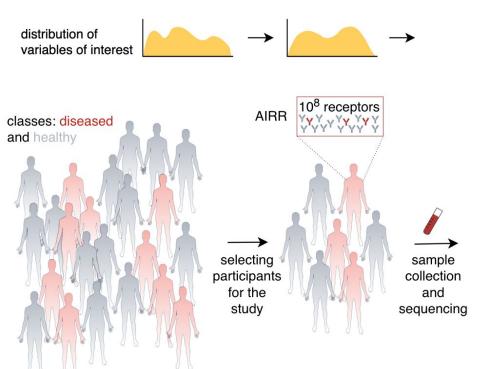
Nature Machine Intelligence 3, 936–944 (2021) Cite this article

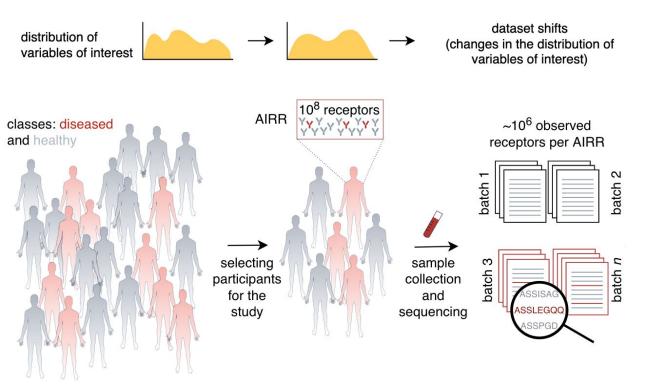
2702 Accesses | 11 Citations | 29 Altmetric | Metrics



distribution of variables of interest

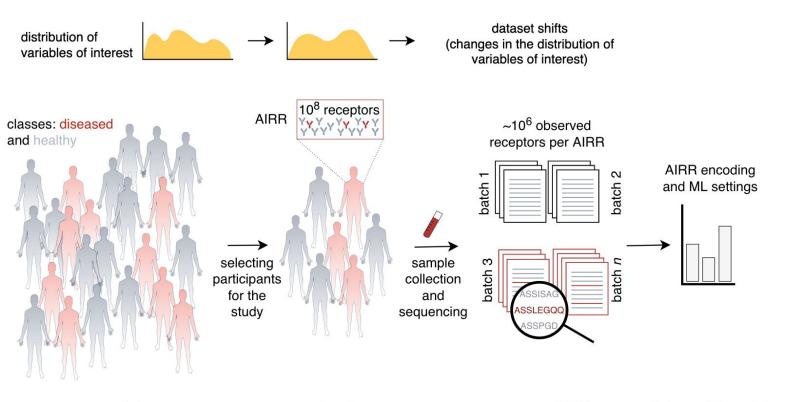




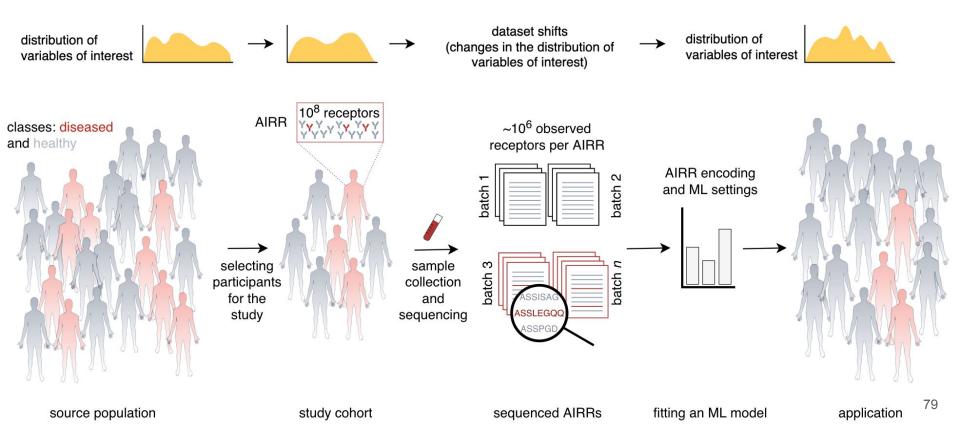


source population

sequenced AIRRs



source population

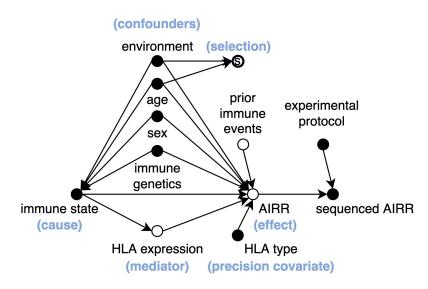


The causal inference framework

- □ Formally describes the data-generating process to discover causal effects between the variables in the process, under a set of assumptions (Pearl 2009)
- Causal effect of X on Y: the difference in the value of Y while changing X and keeping all other variables and conditions the same

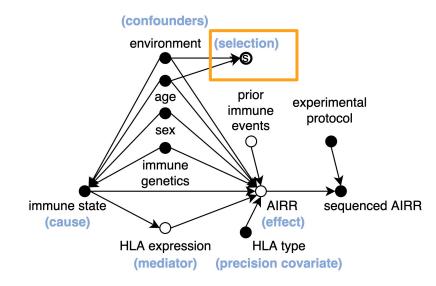
Causality doesn't matter [too much] for prediction tasks, but when obtaining the data or applying methods to new populations, causality can help formalize and solve challenges even in predictive settings

A causal model for a viral infection (different for different diseases)



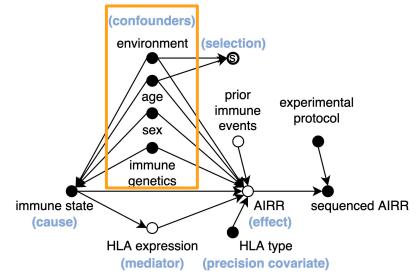
Pavlovic et al. 2022

- A causal model for a viral infection (different for different diseases)
- Selection bias:
 - □ preferential selection of study participants
 - spurious correlations: introduced, removed, reversed



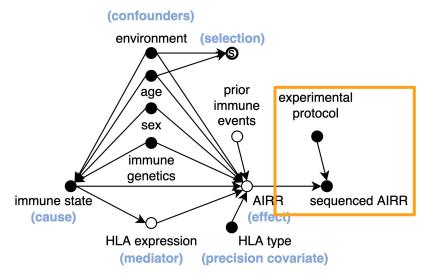
Pavlovic et al. 2022

- A causal model for a viral infection (different for different diseases)
- Selection bias:
 - preferential selection of study participants
 - spurious correlations: introduced, removed, reversed
- Confounding bias:
 - □ influence both the immune state and AIRR



Pavlovic et al. 2022

- A causal model for a viral infection (different for different diseases)
- Selection bias:
 - □ preferential selection of study participants
 - spurious correlations: introduced, removed, reversed
- Confounding bias:
 - □ influence both the immune state and AIRR
- Batch effects & timing of measurement



Pavlovic et al. 2022

Summary

- □ AIRR ML ≠ applying several fancy ML method to AIRR data
 - □ Complex biological structure (both receptors and repertoires)
 - □ Large variability and sparsity
 - □ Causal variables (sex, age, HLA etc)
- AIRR ML methods should be benchmarked on both experimental and synthetic data with known ground truth
- Ultimately we need large-scale experimental data with known ground truth

Acknowledgements

UiO Oslo

Prof. Geir Kjetil Sandve Prof. Victor Greiff Prof. Dag T.T. Haug Prof. Ingrid H. Haff Prof. Ludvig Sollid Prof. Torbjørn Rognes Dr. Fridtjof Lund-Johansen Dr. Rahmad Akbar Dr. Igor Snapkov Dr. Philippe Robert Dr. Chakravarthi Kanduri Dr. Ivar Grytten Dr. Knut Rand Dr. Enrico Riccardi Dr. Mai Ha Vu Dr. Brij Bhusan Mehta Lonneke Scheffer Andrei Slabodkin Ghadi Al Hajj Robert Frank Thomas Minotto Khang Le Quy

UFlorida Keshav Motwani Prof. Todd Brusko

ETH Zurich Dr. Cédric R. Weber Prof. Sai T. Reddy

FHNW

Prof. Enkelejda Miho

JKU Linz

Prof. Günter Klambauer Prof. Sepp Hochreiter Michael Widrich

iReceptor+

Prof. Gur Yaari Prof. Lindsay Cowell Dr. Scott Christley Dr. Artur Rocha Alexandre Almeida Costa

UCSD

Dr. Yana Safonova Prof. Pavel Pevzner



BGI

Prof. Xiao Liu Wei Zhang Longlong Wang Jinghua Wu Ziyun Wan Shiyu Wang Kai Gao

Funding

University of Oslo Research Council of Norway Norwegian Cancer Society Horizon2020 K. G. Jebsen Center