# Modelling and Reality in Chemistry

Univ.-Prof. DDr. Klaus R. Liedl

Klaus.Liedl@uibk.ac.at

https://liedllab.org/

# Emergence of Theoretical Chemistry

#### 3. Quantisierung als Eigenwertproblem; von E. Schrödinger.

(Erste Mitteilung.)

§ 1. In dieser Mitteilung möchte ich zunächst an dem einfachsten Fall des (nichtrelativistischen und ungestörten) Wasserstoffatoms zeigen, daß die übliche Quantisierungsvorschrift sich durch eine andere Forderung ersetzen läßt, in der kein Wort von "ganzen Zahlen" mehr vorkommt. Vielmehr ergibt sich die Ganzzahligkeit auf dieselbe natürliche Art, wie etwa die Ganzzahligkeit der Knotenzahl einer schwingenden Saite. Die neue Auffassung ist verallgemeinerungsfähig und rührt, wie ich glaube, sehr tief an das wahre Wesen der Quantenvorschriften.

Schrödinger 1926 Ann. Phys. (284) 361-376

Quantum Mechanics of Many-Electron Systems. By P. A. M. DIRAC, St. John's College, Cambridge.

(Communicated by R. H. Fowler, F.R.S.-Received March 12, 1929.)

#### §1. Introduction.

The general theory of quantum mechanics is now almost complete, the imperfections that still remain being in connection with the exact fitting in of the theory with relativity ideas. These give rise to difficulties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure and ordinary chemical reactions, in which it is, indeed, usually sufficiently accurate if one neglects relativity variation of mass with velocity and assumes only Coulomb forces between the various electrons and atomic nuclei. The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.

Dirac 1929 Proc. R. Soc. Lond. A (123) 714-733

#### Moore's Law



https://umaincertaantropologia.org/tag/ciborgue/

https://www.experimentis-shop.de/abakus-rechenrahmen-mit-100-perlen-detail-717.html

# Evolution of airplanes



https://www.messynessychic.com/2017/02/22/only-photographs-remained-of-the-first-flying-man-until-now/



https://www.flickr.com/photos/24874528@N04/9268444007 /in/photostream/



https://www.bbc.com/news/uk-34301689



https://www.jetphotos.com/photo/7680662



https://vi.wikipedia.org/wiki/Airbus\_A350



https://eu.lcsun-news.com/story/news/local/spaceport/2018/12/ 12/virgin-galactic-space-flight-could-come-thursday/2292279002/

# Evolution of computers



https://de.wikipedia.org/wiki/Zuse\_Z3



© Wang Yin

# Evolution of computers



https://www.wallpics.net/the-witcher-3-wild-hunt-desktop-wallpapers/ https://www.nvidia.com/de-de/geforce/graphics-cards/30-series/rtx-3090

#### Hepatitis C

Hepatitis C, 2007 20 Prevalence of infection > 10% 2.5-10% 1-2.5% Source: <sup>©</sup>WHO, 2008. All rights reserved.

200 million people infected

700 000 deaths per year

Jang & Chung 2011 Gut and liver (5) 117-32

# Hepatitis C



https://www.pharmacytimes.com/view/dailymedication-pearl-harvoni-ledipasvir-and-sofosbuvir-



https://www.empr.com/drug/sovaldi/



https://www.empr.com/home/news/epclusa-approved-for-pediatric-patients-with-chronic-hepatitis-c-infection/

Harvoni: 13 864 000 000 USD 2015 Sovaldi: 5 276 000 000 USD 2015

#### Promiscuity of biomolecular interfaces



Chuang Liu et al. 2020 Physics Reports (846) 1-66 ISSN 0370-1573

#### Free Energies and Dissociation Constants



# Challenges in modelling in chemistry

- 1. Degrees of freedom governing chemical processes are electronic, nuclear, atomic, molecular and supra-molecular, and the corresponding particles have different masses and sizes
- 2. Interactions are governed by quantum mechanics: Dirac or Schrödinger equation, for not too small mass or too low temperature by classical equations of motion
- 3. At non-zero temperatures, the behavior of particles is governed by statistical mechanics: Fermi-Dirac, Bose-Einstein, or Boltzmann **ensembles of configurations are to be considered**, **not single structures**
- 4. The Coulomb interaction is rather long-ranged (distance<sup>-1</sup>) and induces many-body effects that make accurate modelling rather expensive
- 5. (Free) energy differences that drive processes can be very small compared to the total energy of the interacting particles
- 6. Time scales of processes easily span 15 orders of magnitude (fsec => sec)

Challenge: striking an appropriate balance between accuracy and computational cost while maintaining a physically correct mechanism of the process of interest

# Different levels of resolution of modelling

**Table 1:** Characteristic sizes of particles at different levels of resolution of modeling, scaling of the computational effort as a function of the number of nucleons  $(N_n)$ , electrons  $(N_e)$ , atoms  $(N_a)$  or beads  $(N_b)$ , and the reduction of the number of degrees of freedom  $N_{df}$  or interactions and the reduction of computational effort that can be achieved by coarse-graining to the next level of resolution.

| Level of resolution                       | I                                 | П                                  | Ш                             | IV                        | V                                   |
|-------------------------------------------|-----------------------------------|------------------------------------|-------------------------------|---------------------------|-------------------------------------|
| Particles                                 | nucleons<br>+ electrons           | nuclei<br>+ electrons              | atoms                         | supra-atomic<br>beads     | supra-molecular<br>beads            |
| Mass of bead [amu]                        | 10 <sup>-3</sup> -1               | $10^{-3}$ - $10^{2}$               | 1-10 <sup>2</sup>             | 10–10 <sup>2</sup>        | 10–10 <sup>2</sup>                  |
| Size of bead [nm]                         | 10 <sup>-6</sup>                  | 10 <sup>-6</sup> -10 <sup>-5</sup> | 0.03-0.3                      | 0.5–1.0                   | 0.5–1.0                             |
| Interactions                              | strong Coulomb<br>Pauli principle | Coulomb<br>Pauli                   | bonded term<br>repulsive, var | s, Coulomb<br>1 der Waals | Coulomb<br>repulsive, van der Waals |
| Scaling effort                            | $N_n^{\geq 3}$                    | $N_e^{\geq 3}$                     | $N_{a}^{1-2}$                 | $N_{b}^{1-2}$             | $N_{b}^{1-2}$                       |
| Reduction number<br>of degrees of freedom | 10–100                            | 10-100                             | 2–5                           | 2–10                      | -                                   |
| Reduction<br>computational effort         | $\geq 10^{3}$                     | $\geq 10^3$                        | 2–25                          | 2–100                     |                                     |

Meier et al. 2013 Angew. Chem. Int. Ed. (52) 2820-2834

### Quantum mechanics vs classical mechanics

#### Table 2: Overview of main differences between quantum and classical mechanics as applied to molecular systems.

| Quantum statistical mechanics (QM) |                                                                                         | Clas | Classical statistical mechanics (CM)                                                                                 |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------|--|--|
| •                                  | time-dependent Schrödinger equation:                                                    |      | Newton's equation:                                                                                                   |  |  |
|                                    | $i\hbarrac{\partial \Psi\left(ec{r}^{N},t ight)}{\partial t}=\hat{H}\Psi(ec{r}^{N},t)$ |      | $ec{f}_i = oldsymbol{m}_i ec{a}_i ~~ec{f}_i = -rac{\partial ec{v}(ec{r}^{\scriptscriptstyle N})}{\partial ec{r}_i}$ |  |  |
|                                    | with wave function $arPsi$                                                              |      |                                                                                                                      |  |  |
| •                                  | Born-Oppenheimer approximation:<br>nuclei and electrons decoupled                       | •    | interaction potential energy function $V(\vec{r}^N)$ is generally pair additive, but polarisation can be included    |  |  |
| •                                  | probabilistic nature of wave function,<br>$ \Psi(\vec{r}_i, t) ^2$                      | •    | phase space trajectory $\vec{r}^N$ , $\vec{p}^N$                                                                     |  |  |
|                                    | Uncertainty principle, no trajectory                                                    |      |                                                                                                                      |  |  |
| •                                  | Bose-Einstein or Fermi-Dirac statistics (Pauli principle)                               | •    | Boltzmann statistics                                                                                                 |  |  |

Meier et al. 2013 Angew. Chem. Int. Ed. (52) 2820-2834

#### Free Energies and Dissociation Constants





Gases and Crystals

 For gases and crystals, it is possible to calculate probabilities and partition functions directly



rare interactions





periodic interactions

Liquids

- But: in the liquid phase interactions are <u>persistent</u>, <u>strong</u> and <u>not</u> <u>periodic</u>
- Idea: simulation and observation of the system



=> important configurations will occur often, unimportant configurations will occur rarely

# Simulation

• But: we cannot simulate 10<sup>+23</sup> molecules for 1 s



so, we hope that we end up with the same result if we simulate fewer particles (10<sup>+6</sup>) for a "longer" time (10<sup>-6</sup> s) = <u>ergodic hypothesis</u>

• Also, experimental measurements are usually time- and ensembleaverages at the same time

# Scaling Problem: Volume $\approx r^3$ , surface $\approx r^2$

At a box length of r = 1 dm nearly all molecules are in the interior, whereas at r = 100 Å nearly all molecules are at the surface.

|                                                                                  |        | total volume remains constan |     |  |
|----------------------------------------------------------------------------------|--------|------------------------------|-----|--|
|                                                                                  | 1<br>1 |                              |     |  |
| Total surface area<br>(height × width ×<br>number of sides ×<br>number of boxes) | 6      | 150                          | 750 |  |
| Total volume<br>(height × width × length<br>× number of boxes)                   | 1      | 125                          | 125 |  |
| Surface-to-volume<br>ratio<br>(surface area / volume)                            | 6      | 1.2                          | 6   |  |

Surface area increases while

#### Scaling Problem: Volume $\approx r^3$ , surface $\approx r^2$



# Solution: periodic boundary conditions



# Spherical cutoff and minimum image convention



# Cutoff artefacts



O-O distance / Å

# Ewald method



# Solution of equation of motion



#### Solution of equation of motion





#### Solution of equation of motion





#### Euler method



#### Velocity Verlet Methode



new velocities

 $v_1 = v_0 + \frac{1}{2} (a_0 + a_1) \Delta t$ 

# Initial conditions – starting coordinates



| $\mathbf{V}$ | 00 |  |
|--------------|----|--|
| т.           |    |  |
|              | ca |  |

| Molecular Type          | X-ray <b>↓</b> ≣ | NMR↓↑ | EMĴ↓↑ | Multiple methods <b></b> ↓↑ | Neutron↓↑ | Other↓↑ | Total ↓† |
|-------------------------|------------------|-------|-------|-----------------------------|-----------|---------|----------|
| Protein (only)          | 143468           | 11850 | 6416  | 178                         | 70        | 32      | 162014   |
| Protein/Oligosaccharide | 8490             | 31    | 1061  | 5                           | 0         | 0       | 9587     |
| Protein/NA              | 7575             | 274   | 2101  | 3                           | 0         | 0       | 9953     |
| Nucleic acid (only)     | 2387             | 1391  | 61    | 8                           | 2         | 1       | 3850     |
| Other                   | 150              | 31    | 3     | 0                           | 0         | 0       | 184      |
| Oligosaccharide (only)  | 11               | 6     | 0     | 1                           | 0         | 4       | 22       |
| Total                   | 162081           | 13583 | 9642  | 195                         | 72        | 37      | 185610   |

https://www.rcsb.org/stats/

### Initial conditions – protonation



#### Initial conditions – crystal packing effects



#### Initial conditions – 10 e<sup>-</sup> systems



#### Initial conditions – velocities



# Classical MD simulation protocol



Fernández-Quintero et al. 2019 mAbs 11:6 1077-1088

# Enhanced Sampling: from Micro- to Milliseconds



# Enhanced Sampling: from Micro- to Milliseconds


### Summary







https://www.experimentis-shop.de/abakus-rechenrahmen-mit-100-perlen-detail-717.html



# Antibody's Next Top Model

Use of CDR loop ensembles from molecular dynamics simulations guides antibody design and docking

Dr. Monica L. Fernández-Quintero Monica.Fernandez-Quintero@uibk.ac.at https://liedllab.org/

### Timescales of Antibody Dynamics



### Timescales of Antibody Dynamics



## Enhanced Sampling: from Micro- to Milliseconds







### Antibodies: What Are We Looking At?



### Ensemble in Solution by Molecular Dynamics Simulations



### Ensemble in Solution by Molecular Dynamics Simulations



Crystal Structure or Model



**Ensembles in Solution** 

### Assigning Canonical Clusters to the CDR Loops



#### CDR-H3 Loop Ensemble in Solution of anti-Hemagglutinin Antibody Fv 17/9



### Crystal Packing Effects of an anti-Hemagglutinin Antibody Fv 17/9



#### CDR-H3 Loop Ensemble in Solution of anti-Hemagglutinin Antibody Fv 17/9



## **Different Binding Theories**



### CDR-H3 Loop Affinity Maturation of the Germline Antibody 7G12



Fernández-Quintero et al. Frontiers in Immunology 2019 (9) 3065

### Rigidification upon Affinity Maturation



naive antibody

matured antibody

### Affinity Maturation Leads to Rigidifcation



### Antibody Humanization



## Humanization of Anti IL-13 Antibody



Fernández-Quintero et al. PEDS 2019 (32) 411-422

#### Humanization of Anti-idiotypic Ab2/3H6 against Anti-HIV-1 Antibody 2F5







### CDR-L3 Loop Dynamics and Canonical Structures



Fernández-Quintero et al. Frontiers in Immunology 2019 (10) 2652

### CDR-L3 Loop Dynamics and Canonical Structures

| CDR-L39 | L3-9-1<br>(1F4X) | L3-9-2<br>(1KCS) | L3-9-cis6-1<br>(2FBJ) | L3-9-cis7-1<br>(1J1P) | L3-9-cis7-2<br>(1G7I) | L3-9-cis7-3<br>(1L7I) | non-canonical<br>solution<br>structures |
|---------|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------------------------|
| 3EOA    | 0 %              | 0 %              | 0 %                   | 100%                  | 0 %                   | 0 %                   | 0 %                                     |
| 3L5W    | 0 %              | 0 %              | 0 %                   | 100%                  | 0 %                   | 0 %                   | 0 %                                     |
| 1MLB    | 0 %              | 0 %              | 0 %                   | 100%                  | 0 %                   | 0 %                   | 0 %                                     |
| 1FL6    | 0 %              | 0 %              | 0 %                   | 100%                  | 0 %                   | 0 %                   | 0 %                                     |
| 1HIM    | 0 %              | 0 %              | 0 %                   | 100%                  | 0 %                   | 0 %                   | 0 %                                     |
| 3RVW    | 0 %              | 0 %              | 0 %                   | 100%                  | 0 %                   | 0 %                   | 0 %                                     |
| 1NGZ    | 0 %              | 0 %              | 0 %                   | 100%                  | 0 %                   | 0 %                   | 0 %                                     |
| 1AJ7    | 0 %              | 0 %              | 0 %                   | 100%                  | 0 %                   | 0 %                   | 0 %                                     |

Fernández-Quintero et al. Frontiers in Immunology 2019 (10) 2652

### CDR-L3 Loop Dynamics and Canonical Structures

| CDR-L39 | L3-9-1<br>(1F4X) | L3-9-2<br>(1KCS) | L3-9-cis6-1<br>(2FBJ) | L3-9-cis7-1<br>(1J1P) | L3-9-cis7-2<br>(1G7I) | L3-9-cis7-3<br>(1L7I) | non-canonical<br>solution<br>structures |
|---------|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------------------------|
| 3EOA    | 0 %              | C1 (89%)         | 0 %                   | C1 (89%)              | C1 (89%)              | C2 (11%)              | 0 %                                     |
| 3L5W    | C2 (14%)         | C1 (77%)         | 0 %                   | C1 (77%)              | C2 (14%)              | C4 (3%)               | C3 (6%)                                 |
| 1MLB    | C3 (14%)         | C2 (23%)         | C3 (14%)              | C2 (23%)              | C3 (14%)              | C3 (14%)              | C1+C4 (55+8%)                           |
| 1FL6    | C2 (18%)         | C2 (18%)         | C2 (18%)              | C2 (18%)              | C2 (18%)              | C1 (76%)              | C3 (6%)                                 |
| 1HIM    | C4 (4%)          | C3 (7%)          | C3 (7%)               | C3 (7%)               | C4 (4%)               | C3 (7%)               | C1+C2 (51+38%)                          |
| 3RVW    | 0 %              | C1 (61%)         | C1 (61%)              | C1 (61%)              | C2 (32%)              | C4 (2%)               | C3 (5%)                                 |
| 1NGZ    | C2 (22%)         | C2 (22%)         | 0 %                   | C2 (22%)              | C2 (22%)              | 0 %                   | C1+C3 (77+1%)                           |
| 1AJ7    | 0 %              | C1 (54%)         | C2 (18%)              | C1 (54%)              | C1 (54%)              | C1 (54%)              | C3+C4 (18+10%)                          |

#### Paratope States in Solution Shift the VH-VL Interdomain Orientations



#### Paratope States in Solution Shift the VH-VL Interdomain Orientations



Fernández-Quintero et al. Communications Biology 2020 (3) 1-14

### Framework Residue H71 Co-Determines Paratope States



### Framework Residue H71 Co-Determines Paratope States



#### Different Germline Pairings Result in Different Paratope States



Fernández-Quintero et al. Frontiers in Immunology 2021 (12) 675655

### Different Germline Pairings Result in Different Paratope States



#### 

H3-53:L4-1



Fernández-Quintero et al. Frontiers in Immunology 2021 (12) 675655









G6 Fab binding VEGF



#### Fernández-Quintero et al. Structure 2022 (30) 1-11

MOR04357






#### Paratope States in Solution Improve Structure Prediction and Docking

MOR04357



#### Paratope States in Solution Improve Structure Prediction and Docking



Fernández-Quintero et al. Structure 2022 (30) 1-11

| Antibody | Classification | Probability of the | Probability based | weighted probability   |
|----------|----------------|--------------------|-------------------|------------------------|
| PDB      |                | Markov-state Model | on docking score  | based on docking score |
| 2FJF     | difficult      | 44%                | 49%               | 59%                    |
| 5D7S     | difficult      | 73%                | 48%               | 84%                    |
| 4DVB     | difficult      | 75%                | 39%               | 83%                    |
| 6B0W     | rigid          | 84%                | 65%               | 91%                    |
| 1MLB     | rigid          | 58%                | 37%               | 71%                    |
| 3EO9     | medium         | 69%                | 52%               | 78%                    |

- CDR loops are highly flexible and need to be characterized as conformational ensembles in solution.
- The relative  $V_H V_L$  dynamics occurs in the low nanosecond.
- Affinity maturation leads to a local and global rigidification of both antibody and T-cell receptors.
- Antibodies exist as several interconverting paratope states.



78

- CDR loops are highly flexible and need to be characterized as conformational ensembles in solution.
- The relative  $V_H V_L$  dynamics occurs in the low nanosecond.
- Affinity maturation leads to a local and global rigidification of both antibody and T-cell receptors.
- Antibodies exist as several interconverting paratope states.



- CDR loops are highly flexible and need to be characterized as conformational ensembles in solution.
- The relative  $V_H V_L$  dynamics occurs in the low nanosecond.
- Affinity maturation leads to a local and global rigidification of both antibody and T-cell receptors.
- Antibodies exist as several interconverting paratope states.



- CDR loops are highly flexible and need to be characterized as conformational ensembles in solution.
- The relative  $V_H V_L$  dynamics occurs in the low nanosecond.
- Affinity maturation leads to a local and global rigidification of both antibody and T-cell receptors.
- Antibodies exist as several interconverting paratope states.





- Antibody paratope states shift the relative  $V_H V_L$  domain orientations.
- Specific framework residues and different germline pairings result in different paratope states in solution.
- Antibody-antigen docking profits from reasonable ensembles in solution.

- Antibody paratope states shift the relative  $V_H V_L$  domain orientations.
- Specific framework residues and different germline pairings result in different paratope states in solution.
- Antibody-antigen docking profits from reasonable ensembles in solution.



- Antibody paratope states shift the relative V<sub>H</sub>-V<sub>L</sub> domain orientations.
- Specific framework residues and different germline pairings result in different paratope states in solution.
- Antibody-antigen docking profits from reasonable ensembles in solution.



#### Paratope States in Solution Improve Structure Prediction and Docking



Acknowledgments





# Der Wissenschaftsfonds.





MEDIZINISCHE Universität

INNSBRUCK



