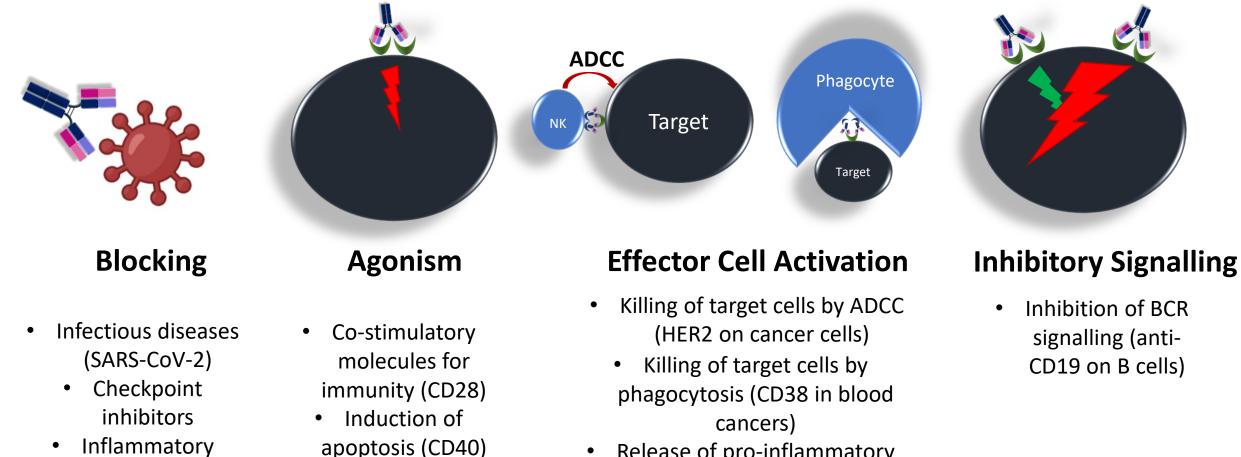


Antibody Fc Engineering: Designing Antibodies for Cancer, Covid-19, and Beyond

Alicia Chenoweth

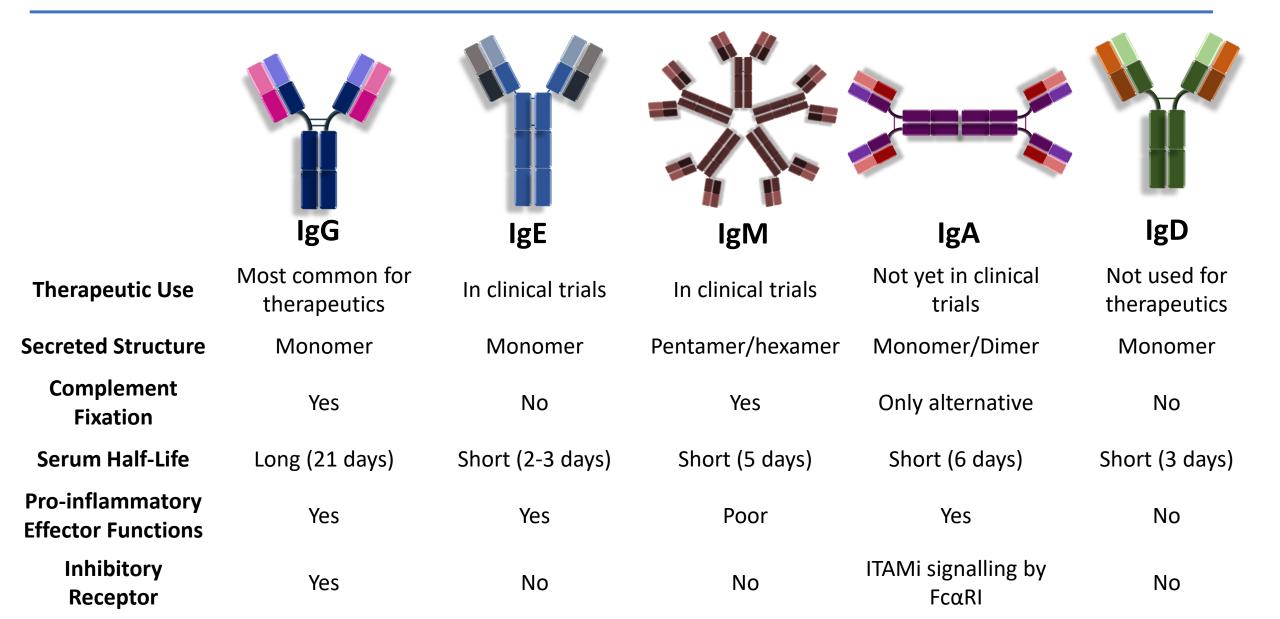
Postdoctoral Research Associate

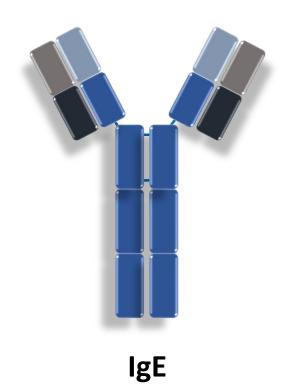

King's College London

Monoclonal Antibodies

- Monoclonal antibodies (mAbs) are one of the most clinically successful therapeutic formats across a diverse range of diseases
 - 5 of the top 10 selling drugs of 2020 were mAbs
- Over 100 mAbs approved in the US/EU and over 600 in various stages of clinical development
- Majority of approved mAbs are for cancer indications, many also developed for autoimmune and inflammatory diseases and infectious diseases
- Well-tolerated
- Highly specific for target
- Engages receptors on immune cells to induce effector functions

Antibody Functions

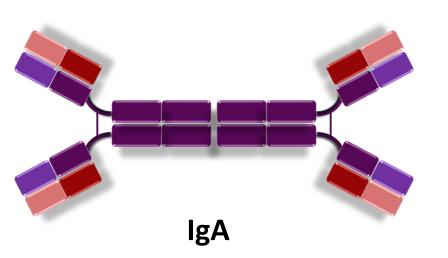

٠

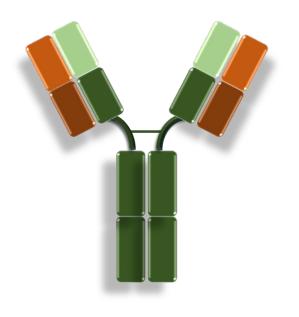

- Inflammatory ٠ targets (IL-6, C5a)
 - **Fc-independent**

Fc-dependent

Release of pro-inflammatory

mediators


- Commonly associated with allergic/hypersensitivity responses
- Short serum half-life, but prolonged tissue half-life (up to 2 weeks)
- Able to induce strong pro-inflammatory effector functions through FceRI on mast cells, basophils, monocytes and macrophages
- No known inhibitory receptor
- Phase I clinical trial of an IgE-based antibody therapeutic for cancer, well tolerated in most individuals


lgM

Keyt BA *et al.* (2020) *Antibodies* Pisil Y *et al.* (2021) *Pathogens* Ku Z *et al.* (2021) *Nature*

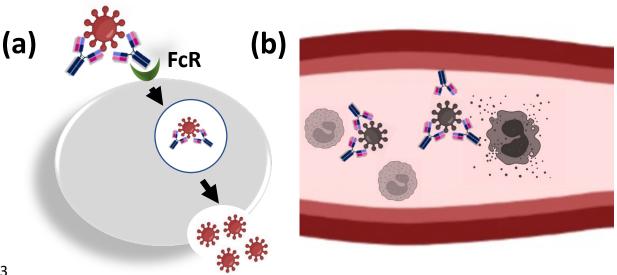
- Forms pentamers and hexamers
- Stronger avidity binding to targets
- Poor induction of cellular-based inflammatory activation
- Can potently activate the complement pathway
- Around 20 IgM-based antibodies have been tested in clinical trials, mostly against lipopolysaccharides, glycolipids, and glycans (poorly immunogenic targets)
- IgM-based therapeutics also being developed against SARS-CoV-2, has higher neutralisation of viral target compared to IgG

- Forms monomers and dimers
- Two subtypes (IgA1 and IgA2)
- Can induce pro-inflammatory effector functions by neutrophils, monocytes and macrophages through receptor FcαRI
- Short serum half-life
- In vitro studies have demonstrated greater neutrophilmediated cancer cell killing compared to IgG, however no IgA in clinical studies yet

lgD

- Short serum half-life
- Function is poorly understood no induction of complement or immune cell activation

IgG Antibody Subclasses


	lgG1	lgG2	lgG3	lgG4
Half-life	21 days	21 days	7-21 days (allotype-dependent)	21 days
Binding to Fc Receptors	All	Limited (only one polymorphic form of FcyRIIa)	All	Limited (only FcγRI and inhibitory FcγRIIb)
Complement binding	++	+	++	-
Hinge Length (amino acids)	15	12	62* (allotype dependent)	12
Therapeutic Use	Fc-dependent functions	Fc-independent functions	None	Fc-independent functions

Fc Engineering for Blocking Antibodies

- 1. Removing Effector Functions
- 2. Improving Half-Life

Removal of Effector Functions

- Removal of unwanted effector functions can improve safety
- Some anti-SARS-CoV-2 antibodies in late-stage trials have removed effector functions to avoid potential antibodydependent enhancement (ADE)
- ADE has been demonstrated in vitro for influenza¹, HIV², Ebola³, and Dengue virus⁴
- Also, for targets on immune cells i.e. checkpoint inhibitors, removal of effector functions can prevent immune cell depletion or undesired activation

Antibody-dependent Enhancement of Viral Infections

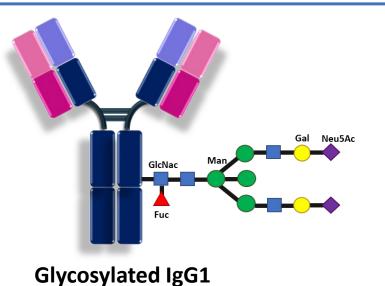
(a) Increased viral infection of immune cells (i.e. macrophages) by internalisation via FcR
(b) Increased airway inflammation by recruitment and activation of immune cells

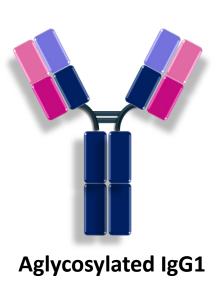
¹Ochiai H et al. (1992) J Med Virol
 ²Robinson WE et al. (1988) Lancet
 ³Takada A et al. (2003) J Virol
 ⁴Dejnirattisai W et al. (2010) Science

Common Ways to Remove Effector Functions

Change subclass from IgG1 to IgG2 or IgG4

- Many mAbs in clinic have used this approach, and mostly works well
 - Anti-PD-1 mAbs pembrolizumab, nivolumab, cemiplimab are lgG4
 - Anti-CTLA-4 mAb tremelimumab is IgG2
- Despite having a more restricted FcR binding profile than IgG1, IgG2 and IgG4 can still induce unwanted effector functions
- Anti-PD-1 IgG4 antibody induced activation of the receptor instead of blocking *in vitro*, and this function was ablated when the Fc binding capacity was removed¹
- Anti-CD28 IgG4 mAb able to induce CD28 clustering and signalling by antibody scaffolding by FcγRIIb²

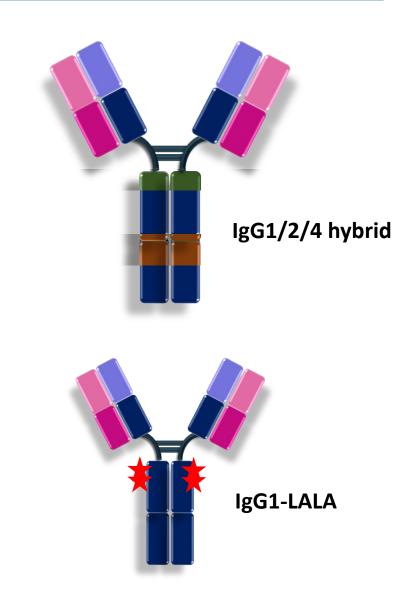

¹Zhang T *et al.* (2018) *Cancer Immunology* ²Suntharalingam G *et al.* (2006) *N Engl J Med*



Common Ways to Remove Effector Functions

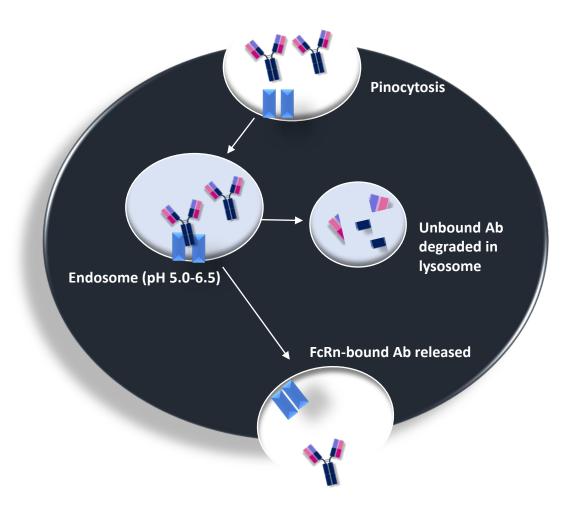
Removal of the Glycan

- Removing the N-linked glycan at position 297 of the Fc (often by mutation of the N residue to A or Q) can prevent binding to FcR¹
- One approved antibody with N²⁹⁷A atezolizumab anti-PD-L1
- May reduce antibody thermostability²



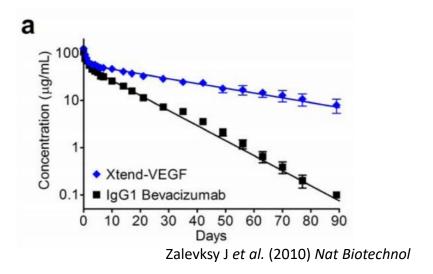
¹Lux A et al. (2013) J Immunol ²Alsenaidy MA et al. (2013) J Pharm Sci

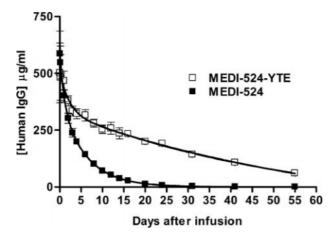
Common Ways to Remove Effector Functions


Amino acid modifications

- Hybrid antibodies
 - Common strategy to swap hinge and FG loop regions (binding to FcR regions) of IgG2 and/or IgG4
 - Some SARS-CoV-2 mAbs in development use this approach
 - More effective at removing effector functions than IgG2 or IgG4 full length backbones
- Two amino acid modifications in hinge L²³⁴A/L²³⁵A (LALA)
 - >100 fold reduced binding to FcRs¹
 - Two approved mAbs use this technique
 - Spesolimab (anti-IL-36R) and Teplizumab (anti-CD3)

Half-Life Extension

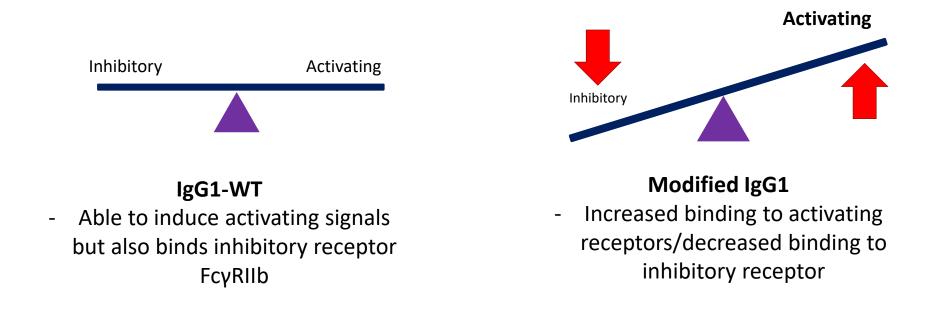

- Increased half-life of mAbs may increase efficacy, decrease dosing frequency, and thus lower cost
- May also afford longer-term protection (> 3 months) against infectious diseases for high-risk individuals (e.g. SARS-CoV-2, HIV)
- Half-life of IgG determined by its interaction with FcRn
- FcRn binds IgG only at pH 5.0-6.5 (endosomal compartments) and not at physiological pH 7.4
- To improve half-life, efforts have concentrated on improving the affinity to FcRn at pH 5.0-6.5



Half-Life Extension

- Two common half-life extension strategies:
 - M⁴²⁸L/N⁴³⁴S (LS/Xtend)
 - 11-fold higher FcRn binding affinity at pH 6.0¹
 - Ravulizumab (anti-C5a) approved for paroxysmal nocturnal hemoglobinuria, now in trials for SARS-CoV-2
 - Targets same epitope as eculizumab, but half-life of ~52 days compared to ~11 days²
 - Eculizumab required treatment every 2 weeks, Ravulizumab every 8 weeks
 - M²⁵²Y/S²⁵⁴T/T²⁵⁶E (YTE)
 - YTE improves half-life to up to 80-112 days in humans in anti-RSV mAb clinical trial³
 - Also decreases effector functions (i.e. ADCC)⁴
 - Levilimab (anti-IL-6R) approved for use in SARS-CoV-2 in Russia, originally developed for RA

¹Zalevksy J *et al.* (2010) *Nat Biotechnol* ²Rondeau E *et al.* (2020) *Kidney Int.* ³Yu XQ *et al.* (2017) *Antimicrob Agents Chemother.* ⁴Dall'Acqua WF *et al.* (2006) *J Biol Chem*

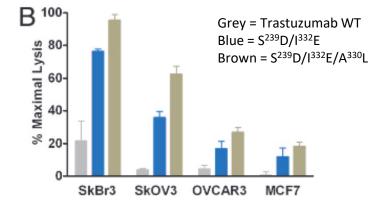

Dall'Acqua WF et al. (2006) J Biol Chem

Fc Engineering for Improved ADCC

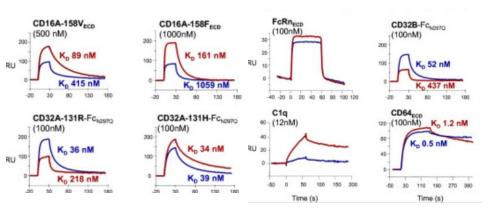
- 1. Amino Acid Modification
- 2. Glyco-Modification

Amino Acid Modification

- Many effector cells co-express the inhibitory FcyRIIb along with the activating FcyRs
- To increase pro-inflammatory effector functions, want to skew the activating/inhibitory ratio by increasing affinity to activating FcγRs and/or decreasing affinity to inhibitory FcγRIIb

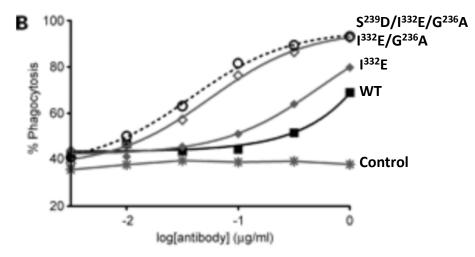


• Key regions and residues for binding to different FcR identified via crystallography and mutagenesis structure/function analyses


Amino Acid Modification

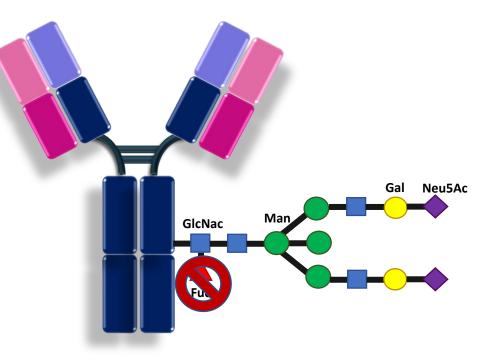
- Common Strategies to Improve ADCC:
 - S²³⁹D/I³³²E and S²³⁹D/I³³²E/A³⁰⁰L
 - Significant increase in binding to FcyRIIIa but also to FcyRIIb¹
 - ADCC enhanced, modest improvement to ADCP, only S²³⁹D/I³³²E retains CDC²
 - Anti-CD19 mAb tafasitamab (incorporating S²³⁹D/I³³²E) approved for DLBCL (non-Hodgkin lymphoma) therapy
 - L²³⁵V/F²⁴³L/R²⁹²P/Y³⁰⁰L/P³⁹⁶L
 - Enhanced binding to FcyRIIIa and decreased FcyRIIb binding^{3,4}
 - Anti-HER2 mAb margetuximab approved for metastatic HER2+ breast cancer – increased progression-free survival compared to non-modified trastuzumab^{4,5}

¹Lazar G et al. (2006) PNAS
²Horton HM et al. (2008) Cancer Research
³Mimoto F et al. (2013) Mabs
⁴Nordstrom JL et al. (2011) Breast Cancer Res
⁵Rugo HS et al. (2021)


Lazar G et al. (2006) PNAS

⁴Nordstrom JL et al. (2011) Breast Cancer Res

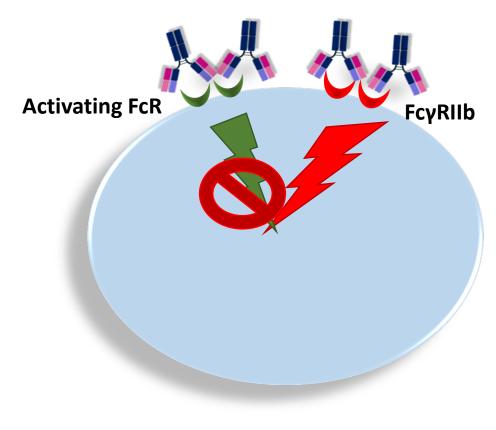
Amino Acid Modification


- Strategies to Improve ADCP:
 - G²³⁶A
 - The G²³⁶A mutation selectively increases binding to FcγRIIa, but decreases affinity to FcγRI
 - Combined with I³³²E alone or S²³⁹D/I³³²E restores FcγRI binding and increases FcγRIIIa binding¹
 - Enhances macrophage-mediated ADCP

¹Richards JO et al. (2008) Mol Cancer Therapies

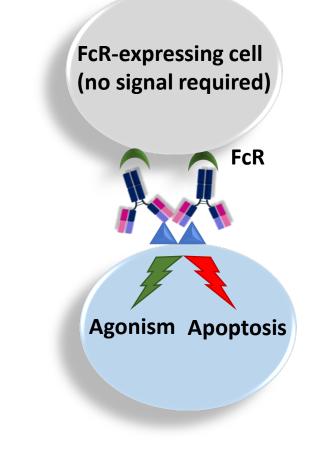
Glyco-Modification

- N-linked glycan in the Fc region important for binding to FcR
- Removal of the fucose residue increases binding to FcyRIIIa
 - Potent activating receptor expressed on NK cells and others, induces ADCC
- At least 6 approved/late stage clinical trials designed to be afucosylated to increase activating effector functions
 - Obinutuzumab nearly doubles progression-free survival in CLL patients compared to rituximab¹
- Viable strategy for SARS-CoV-2? Probably not.
 - Low fucosylation in HIV associated with elite controllers, however associated with enhanced pathology in dengue
 - Recent study demonstrated increase in afucosylated antibodies in critically ill SARS-CoV-2 patients compared to mild symptoms, may be increasing inflammation and exacerbating infection²



Fc Engineering to Enhance Fc γ RIIb Affinity

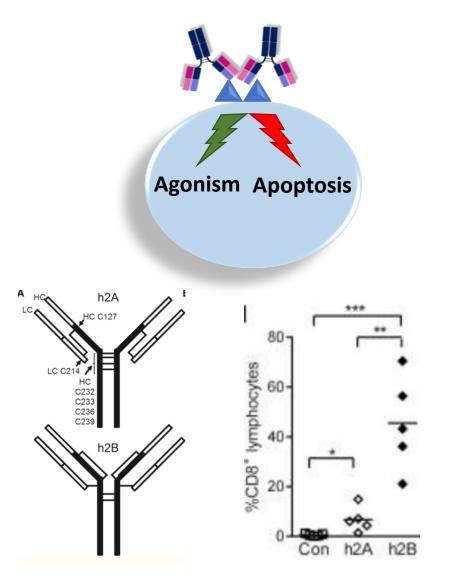
- 1. Allergy and Autoimmunity
- 2. Scaffolding


Allergy and Autoimmunity Therapeutics

- FcγRIIb is an inhibitory receptor
 - Can dampen and restrict activating signals i.e. BCR, other FcR
- Increasing affinity for FcγRIIb can induce powerful suppression of activating signals
 - S²⁶⁷E/L³²⁸F (SELF)
 - Increases FcγRIIb affinity by around 400-fold but also increases FcγRIIa-R¹³¹ allele affinity¹
 - Obexelimab is anti-CD19 in clinical trials, suppresses BCR signalling and proliferation in autoimmunity
 - XmAb7195 is SELF modified version of the anti-IgE omalizumab, more efficient removal of IgE and also inhibits B cell IgE production
 - P²³⁸D/E²²⁸D/G²³⁷D/H²⁶⁸D/P²⁷¹G/A³³⁰R (V12)
 - Increases FcγRIIb affinity without increasing FcγRIIa interaction²

Scaffolding

- Passive cross-linking of mAb on opsonised target cell
 - FcR signalling not required, but binding to FcR used as a scaffold to help cluster and cross-link target antigen
- Can enhance antitumour immunity by engaging costimulatory molecules on antigen-presenting cells or T cells
 - i.e. CD40, OX40
- Promote apoptosis of target cells by engaging death receptors
 - i.e. Fas, DR4, DR5
- FcγRIIb very effective at scaffolding
 - mAbs developed to enhance FcγRIIb binding greatly improve agonistic function
 - Anti-DR5 mAb with FcγRIIb-increasing mutations induced greater apoptosis and decreased tumour growth¹
 - Enhanced agonism in anti-OX40 and anti-CD137²

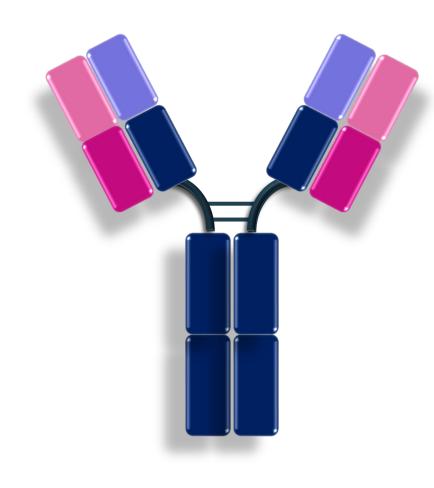


Indirect Engineering for Improved Function

1. Hinge Modification for Enhanced Agonism

Hinge Modification for Enhanced Agonism

- Passive cross-linking of mAb on opsonised target cell
 - Agents that use FcγRIIb as a scaffolder are limited by the availability of the receptor
 - Alternative is to develop "super-agonists"
- IgG2 has a unique hinge configuration compared to other IgG subclasses
 - Four disulphide bonds, can be in different configurations
 - IgG2-A is more flexible, while IgG2-B is more compact and inflexible¹
 - Can mutate the cysteine residues to "lock" the antibody into the IgG2-B conformation
- IgG2-B based anti-CD40 mAb was able to induce agonism independently of Fc receptor binding²



¹Dillon TM *et al.* (2008) *J Biol Chem* ²White AL *et al.* (2015) *Cancer Cell*

Summary

- Monoclonal antibodies are potent therapeutics in many chronic or otherwise uncurable diseases
- Still extensive unmet clinical need as well as considerable room for improvement in many existing therapeutics
- Understanding the structure/function relationship of antibodies and their receptors have allowed for fine tuning of the antibodies for specific functions
- Widely applicable lessons learnt from therapeutics designed for one disease can inform the engineering strategy for another unrelated disease
- Improves therapeutics for emerging diseases right out of the gate i.e. SARS-CoV-2 antibodies engineered with longer half-life for greater efficacy and/or removal of effector functions for greater safety
- To create the optimum therapeutic, need expertise from multiple sectors
 - Antibody experts understand the structure/function relationship of antibodies and their receptors to create novel modifications for specific functions
 - Disease experts understand how the disease functions and what is required

Questions?

ANTI BODY SOCI . ETY

@aliciachenoweth

https://www.linkedin.com/in/alicia-chenoweth/