

Modulation of naive T cell repertoire diversity by individual MHC II in stickleback fish

Ana Teles

Max Planck Institute for Evolutionary Biology, Ploen, Germany

EVOLUTION: BALANCE IN IMMUNITY

THYMIC SELECTION OF T CELLS

POSITIVE SELECTION

Deletion (death-by-neglect) of T cells which receptors does not interact with pMHC molecules

NEGATIVE SELECTION

Clonal deletion of T cells which receptors have high affinity with <u>self</u>

MHC peptides

T CELLS IN THE PERIPHERY

Figure 7.1 The Immune System, 3ed. (© Garland Science 2009)

PERIPHERY

Clonal expansion of T cells which encounter and recognize MHC-peptides on surface of Antigen Presenting Cells (APC)

INDIVIDUAL MHC RESTRICTS T CELL REPERTOIRE DIVERSITY

Proc. Natl. Acad. Sci. USA Vol. 89, pp. 10896-10899, November 1992

The optimal number of major histocompatibility complex molecules in an individual

MARTIN A. NOWAK*†, KRISTINA TARCZY-HORNOCH‡, AND JONATHAN M. AUSTYN†§

Individuals with too high MHC diversity must have a depleted TCR repertoire due to the deletion of T-cells that react with self-peptide-MHC combinations during development

THREE-SPINED STICKLEBACK FISH

Small vertebrate that inhabits a wide variety of natural habitats

Fang et al., Mol. Phylogenetics Evol (2018)

Completely functional adaptive immune system with a natural level of MHC II diversity

Copy-number variation at MHC genes: In Stickleback fish

Copy-number variation at MHC genes: In humans

Bontrop et al. 1999; Horton et al. (2008)

MHC IS UNDER SELECTION FOR DIVERSITY BY PARASITES

Frequency of MHCII alleles in the population

Stutz et al., PlosOne (2014)

Parasite load varies with MHCII diversity

EVOLUTION OF INDIVIDUAL MHC DIVERSITY

MHC-restricted T-cell repertoire diversity: **Experimental test**

Sequencing and analysis of the TCR genes from the **whole body** of naive (2.5 month old) stickleback fish

CHARACTERIZATION OF V D J GENES

Based on the IMGT (international ImMunoGeneTics information system)

TRB1:

- 19 V segments (2 are pseudogenes)
- 1 D segment
- 8 J segments

TRβ2:

- 13 V segments
- 1 D segment
- 9 J genes

MAJORITY OF T CELLS DETECTED SEEM TO BE NAÏVE

- YOUNG FISH -

$TCR\beta 1$ CDR3 repertoire

Izraelson et al., Immunology (2017)

CDR3 DIVERSITY IS SIGNIFICANTLY HIGHER IN INDIVIDUALS WITH LOW-INTERMEDIATE NUMBER OF MHC ALLELES

CHARGE, HYDROPATHY AND STRENGTH OF THE CENTRAL CDR3 RUTE VEHICLORY AMINO ACIDS IS HIGHER IN INDIVIDUALS WITH LOW-INTERMEDIATE NUMBER OF MHC ALLELES

TCRβ1

Regulatory mechanisms mediated by MHC during selection of T cells

SUMMARY

Most of the T cells seem to be naïve in young fish (2.5 month old)

TCR diversity is significantly higher in individuals with lower/intermediate number of MHC alleles

Number/diversity of MHC alleles influences the CDR3 amino acid properties

MHC-TCR CO-EVOLUTION:

IT IS AN OPTIMIZED (NOT MAXIMIZED) NUMBER OF MHC MOLECULES IN AN INDIVIDUAL THAT FAVORS AN OPTIMAL DIVERSITY OF T CELLS

ACKNOWLEDGMENTS

Emmy Noether Group Evolutionary Immunogenomics

Max Planck Institute for Evolutionary Biology

- Tobias L Lenz
- Manfred Milinski
- Benno Woelfing

Max Planck Institute of Immunobiology and Epigenetics

- Thomas Boehm

