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The adaptive immune system records each immune event over a lifetime
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TCRs and BCR (antibodies) are natural diagnostics and therapeutics

Diagnostics
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Big immune sequencing data

Abs and TCRs record past and
current Immune status
‘ 95% of vaccines are
antibody-dependent
’, <

Monoclonal Abs and CAR-T
are blockbuster drugs

Sequence-level

Immunosequencing
Immunoproteomics
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The immune repertoire Antigen
(Antibody and T-cell receptors)

Therapeutics
- Potential TCR/Ab diversity: >1073



Key advances and challenges in adaptive immune receptor (BCR, TCR) analysis

Four elements of immunoengineering
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Antibodies and T-cell receptors:

Natural diagnostics and therapeutics
Potential diversity: > 10"
Diversity in humans: 10°
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Genomics

Key advances

@ High-throughput single-cell sequencing
@ Inference of immune receptor generation

probabilities

@ Extraction of immune receptor sequences

from transcriptomics data

@ Quantification of restricted repertoire
diversity

Outstanding challenges
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@ Uitra-throughput antigen-specific

receptor sequencing

@ Linking receptor specificity to

transcriptome

.
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@ Non-standardized computational analysis
@ Reproducibility and cost

roteomics
Key advances
@9 Serum antibody proteomics
@9 High-throughput epitope mapping
@9 Inference of 3D immune receptor structure
from amino acid sequence

@9 Antibody maturation driven homotypic
antibody interaction

Outstanding challenges

@9 Linking genomic and proteomic antibody
diversity

9 De novo antibody protein sequencing

@9 High-troughput ab initio 3D structure
prediction

. High-accuracy receptor antigen docking
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Comp. immunology
Key advances

In-silico prediction of TCR antigen
binding

Multidimensional description of immune
receptor landscape

Probabilistic modeling of immune
receptor data

@9 Large-scale open access standardization
and receptor database efforts

Outstanding challenges

@9 Predicting receptor cross-reactivity and
recognition holes

@9 Machine learning analysis of immune
repertoires

@9 Identification of immune-signal in
repertoires

@9 Scalable analysis of ultra-large datasets
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Antigen specific
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Biotechnology
Key advances

. De-orphanization of TCR-ligand pairs

. Optimization of immune receptor affinity
maturation

@ Nanobodies and CAR-T-cells

@ CRISPR/Cas9 immune cell editing

Outstanding challenges

@ High-throughput generation of
monoclonal antibodies

@ Library-on-library receptor-ligand pair
selection

@ Efficient immune cell editing in vivo

@ Transcriptional control of engineered

cellular therapeutics in vivo
Brown et al., MSDE, 2019



Outline

Introduction to Adaptive immune receptor repertoire sequencing (AIRR-seq)

- Generation of Immune repertoire diversity
- Workflow and applications of AIRR-seq

Error correction and Standardization of AIRR-seq data

- Experimental design and considerations

- Error and bias correction
- Standardization

Single-cell AIRR-seq
- Pairing by targeted amplification
- Single-cell sequencing

Computational strategies for immune repertoire analysis

- Diversity and convergence analysis
- Network analysis
- Machine learning



Antibody and T cell diversity Is generated by VDJ recombination

V D, J genes encode the variable domains of the

antibody heavy and light chains and the T cell receptor
(TCR) a and 3 chains

One gene segment from each of the three groups of
gene segments (V, D, and J) are randomly
recombined to form new antibody or TCR sequences
(VDJ recombination)

There are also random nucleotides introduced at
the junction of V, D and J genes. This creates an
enormous potential diversity of antigen receptor
sequences.

Unique to antibody or B cell receptor, its gene sequences
can also change itself by introducing random mutations
(somatic hypermutation, 10-3/bp/generation)

Progeny B cells become a mixture of sub-species
(clones, clonal lineage), each expresses a different
antibody sequence and is represented by different
number of cells.

Unrearranged antibody heavy or TCR B chain loci

DNA V, Vv, D, D, Js J, c

; Gene rearrangement — VDJ combination
Rearranged heavy chain gene

Vv D J C

— —— —

Variable domain Constant domain

\

Antibody on B cell
TCRon T cell

Heavy chain

Variable domain

// ‘ B cell clonal expansion and

somatic hypermutation

achain B chain

Antibody Fv

Light chain —
9 Constant

domain

Constant
domain

Current Opinion in Biomedical Engineering

Jiang, 2017, Curr Op in Biomed. Eng.




Immunogenomic architecture of antibodies and TCRs
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V(DD)] recombination is an important and

TCRp rearrangements without D-segment are common, abundant and public

Peter C. de Greef, ") Rob . de Boer
doi: https://doi.org/10.1101/2021.03.05.434088

evolutionarily conserved mechanism for generating
antibodies with unusually long CDR3s

Yana Safonova and Pavel A. Pevzner

10°) resolved by NGS and proteomics



Genetic and proteomic analysis of the antibody repertoire

Vaccination
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ANTIBODY REPERTOIRE
(PROTEIN)

LC-MESMS
ldentity & Abundance endpoint immunological protection
binding specificity known
103-10° diversity
- '.‘

REPERTOIRE ANALYSES

tempaoral diversification:
- cellular expansion
- aflinity maturation

binding specihcity uncertain
= 107 diversity

ANTIBODY REFPERTOIRE
(CELLULAR)

Current Opinion In Chemical Biokogy

Lavinder, Curr Op in Chem Bio, 2015

The functional antibody repertoire
consists of two major components:

- the total set of BCRs expressed on the
surface of B cells (genetic analysis)

- the collection of soluble gut and serum
antibody circulating in the blood
(proteomic analysis)

— Both genomic and proteomic
AIRR-seq lead to sequence data.
Thus, all downstream
computational analytic methods
can be applied to both kinds of
datasets



Adaptive IiImmune receptor repertoire sequencing (AIRR-seq)

Isolation of T/B-cell *
population of interest

RNA isolation and
RT-PCR library preparation

|dentification of suitable study

organism and health status Immune Repertoire
(healthy, diseased, immunized) Sequencing

AT GGA TTAAG

TTGG G A TAG
G ATTTT AGGG

AAAG AT ATTA

High-throughput sequencing
Bioinformatics and statistical and data preprocessing
data analysis

AlIRR-seq = Adaptive immune receptor repertoire sequencing



AlIRR-seq measures central principles of adaptive immunity
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Antigen-specific clonal selection and Greiff, Trends Immunol, 2015
expansion (evolution)

Georgiou, NBT, 2014



Public immune receptor databases (DB)
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Using antigen-specific public immmune receptor databases in AIRR analysis
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Where to ask experimental and computational AIRR-seq questions? &
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Summary: Introduction to AIRR-seq

- The investigation of adaptive immune repertoires requires a high-
throughput sequencing approach

- AIRR-seq can be performed both on the genomic and proteomic level

- AIRR-seq measures central principles of adaptive immunity and opens
the door to new applications (e.g., monoclonal antibody discovery,
iImmunodiagnostics)

- Many AIRR-seq datasets and antigen-specific receptor sequences are
publicly available (e.g., VDJDB, McPAS-TCR, iReceptor, OAS, PIRD)
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Introduction to Adaptive immune receptor repertoire sequencing (AIRR-seq)

- Generation of Immune repertoire diversity
- Workflow and applications of AIRR-seq

Error correction and Standardization of AIRR-seq data

- Experimental design and considerations

- Error and bias correction
- Standardization

Single-cell AIRR-seq
- Pairing by targeted amplification
- Single-cell sequencing

Computational strategies for immune repertoire analysis

- Diversity and convergence analysis
- Network analysis
- Machine learning



Challenges in experimental immune repertoire data generation

The promise and challenge of high-throughput “...broader application of Ig-seq, especially in clinical settings, will
SE( uencin g of the anti body re pertoire require development of standardized experimental design

framework that will enable the sharing and meta-analysis of
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Reproducibility and Reuse
of Adaptive Immune Receptor
Repertoire Data
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Standardization efforts of the AIRR Community
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Source of B and T cells should be carefully considered

B and T cell subsets are genetically and functionally diverse
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Genomic DNA vs. mRNA for
antibody/TCR library generation

IgH library generation from gDNA template: * DNA a”OWS eaSIGr

1 v D C1 '
B - O B correlation of
== = & clone and cell
© o 6 counts
IgH library generation from cDNA template:
1 v D J cCf 2 C3  DNA does not
! N |_ allow IgH isotype
® © analysis

Boyd, Microbiol Spectrum, 2014.

 For RNA-based

a 0.7 - amplication,
2 E:: antibod_y
3 v producing cells
5 E: | (PB, PC) may bias
S immune receptor
L 4 datasets

o

SR aﬁiﬂfﬁlﬁg

Shi, Nature Immunol, 2015.



Definition/computation of clonal (clonotype) family assignment

Any two sequences with the same CDR3 are presumed to be clonally related

(originate from same B cell clonal lineage)
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GC B cell
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Hershberg, Phil Trans B, 2015.
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Sampling depth determines biological and technological coverage

Experimental design for comprehensive sampling

Biological sampling

Cellular compartment Sample

Technological sampling

Number of molecules Number of reads

i
e e
W<

Computational methods to assess sampling

Biological and technical replicates

Replicate 1 Replicate 2

Increased

coverage
advised

Species accumulation curve
w 100 A Sufficient coverage

" Increased
coverage advised

Percentage of
covered clonotype

ol

-
0 100

Percentage of cells/reads

45,150

306,989

7

449,646
Blood
draw 2

Blood
draw 1

Biological sampling: the cell population sampled must be an approximate
representation of the cellular compartment being investigated to allow meaningful
conclusions to be drawn from the data.

Technological sampling: ensuring that the number of sequencing reads exceeds the
molecular diversity, or at least, the clonal diversity of the underlying sample.

Biological replicates: HTS (high-througput sequencing) of different samples of the same
underlying cell population [e.qg., partitioning of PBMC (peripheral blood mononuclear
cells)]. Biological replicates are used to assess biological sampling.

Technical replicates: replicate sequencing of the same immune repertoire library. A
strict definition would be the resequencing of the same library, whereas a more lenient
definition would consider also molecular replicates (separate library preparation of the
same genetic material) adequate provided that biological replicates have been performed
to exclude biological undersampling. Technical replicates are used to assess
technological sampling.

Species accumulation and rarefaction analysis: species accumulation curves display
the rate at which new clones are discovered with increasing number of sequencing reads.
By contrast, rarefaction curves are used to estimate the number of clones at a particular
level of sampling.



Testing sample coverage by species accumulation curves (mouse)

A Urn filled with k numbers of o )
marbles of different species Draw n marbles Qualitatively different outcomes C
in differing frequencies
o0 n is too small = undersampling B 1 M
o0 - not all species are represented
O - incorrect frequencies of species ED Ra UDJ
o0 n is too small = undersampling 1 -ﬂﬂ |
o0 - all species are represented
O - incorrect frequencies of species /i ﬁ
e ®
O -
. BALB/c mice ‘/Q E 0.75
o000 n is large enough T
000 -+ correct representation =
o0 - all species are represented o .
- correct frequenci f i
8 orrect frequencies of species -E ﬂrﬁ{] i g
-
\/ Y @
>
> R -
~3x10° ASCs @@'ﬂ@: ~25x%10% ASCs @@‘EKQ?‘{: - EI rE 5
. Cell isolation O OB OO g
Species accumulation curve CD138+ antibody secreting ' =
cells (ASC) from spleen and * * r ﬂﬂﬂ n
. bone marrow R 4
an 100 A Sufficient coverage S AMA S AAAA E 1.00
% - RNA isolation E—— T A =
o an=" and RT-PCR 7 - 0.75-
‘El - Amplification of IgG VH * i b
w 9 sequences using a mouse ~2.7%10° 250 bp reads ~3.8x10° 250 bp reads -
% E o InL-l'E-EEE'El FR".Speciﬁc primer set I 11 M1 I Il 111 -, ﬂ 5{] o)
= coverage advised - o v =
= dl lllumina MiSeq =
F_';' E sequencing of * ]
T E triplicates (1, Il, 1) * E 0.75-
L o u 1.1x10° CDR3s 1.8x10° CDR3s (i
1.1x10° VDJs 1.7x10° VDJs =
0 100 Data analysis ' ’ - I — - il 0.00 :
CDR3s or full- 3 2 SIS .
\ 3 3 1 1 1 1 r 1 i ] L] ]
Percentage of cells/reads length VDJ region s ‘ — 0 25 50 75 1000 25 S50 75 100

Percentage of accumulated reads [%)]

Greiff, Trends Immunol, 2015. | \ ngh-dlverSIty Super hlgh

/ \ scenario diversity/ \ /

Greiff, BMC Immunol, 2014



Testing sample coverage by species accumulation curves (human)

technical replicates
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Higher coverage leads to higher discovery of public clones

A

Overlap, AA sequences

Overlap, NT sequences
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Overlap of individual TCR beta CDR3
repertoires grows geometrically with the
number of sequence pairs sampled. Plots
indicate the number of shared sequences for 12
unrelated donor pairs in relation to sample size
at the level of

(A) all amino acid sequences,

(B) amino acid sequence only, excluding
matches with identical nucleotide sequences,
and

(C) nucleotide sequences. Each of the 12
colored lines represents the observed overlap
between randomly drawn samples of

unique CDR3 variants for a different pair of
unrelated donors. To extrapolate the predicted
level of overlap if the full individual TCR beta
repertoires were to be sampled, we plotted
fittings of averaged data with a power law (Y =
aXb) as dashed lines.

(D) We plotted the degree to which unique
clonotypes were shared among our nine donors,
and found that the frequency with which TCR
beta clonotypes occur in human repertoires is

distributed according to a power law.
Shugay, Front Imm, 2013



Ensuring exp. data reliability by replicate sequencing |
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Ensuring exp. data reliability by replicate sequencing |
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Ensuring exp. data reliability: DNA vs RNA sequencing
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RNA and DNA were extracted from each peripheral blood sample from 8 CLL patients, on which multiplex RT-PCR or PCR was
performed respectively and sequenced by MiSeq (250 bp paired-end).
A) The percentage of DNA sequences found in each RNA sample. The correlation between the BCR frequency in RNA and functional DNA
repertoires (DNA sequences that were found also in the RNA repertoire) for the 8 CLL patients in

B) all IgHV gene usage frequencies and

C) the low frequency IgHV gene usage frequencies only (<2%). If unequal numbers of RNA molecules per cell significantly skewed the
RNA BCR repertoires, then deviation from y = x correlation would be expected.

Bashford-Rogers, BMC Immunol, 2014



Measuring the replicability, reliability and sensitivity of different TCR methods

NATURE BIOTECHNOLOGY

Table 1| Comparative performance of the nine TCRseq molecular methods

ANALYSIS

TR Method Replicability Reliability Sensitivity Cost per Controls and Format type fastq data

chain sample ($) standards availability

TRA RACE-T 7 4 4 ~230 - Lab protocol Yes
RACE-1_U 4 5 4 ~230 UMI Lab protocol Yes
RACE-2 5 4 5 230-280 - Service or kit Yes
RACE-2.U 4 5 5 230-280 UMI Service or kit Yes
RACE-3 3 2 3 ~150 - Kit Yes
RACE-4 5 6 4 ~150 - Lab protocol Yes
RACE-5 2 3 3 ~300 - Lab protocol Yes

TRB mPCR-1 3 3 3 ~350-550° Synthetic TCRs Service or kit No
mPCR-2 6 7/ / ~25 - Lab protocol Yes
mPCR-3 5 5 3 ~350-550¢ - Service or kit Yes
RACE-T 6 5 4 ~230 - Lab protocol Yes
RACE-1_U 4 6 5 ~230 UMI Lab protocol Yes
RACE-2 6 6 6 230-280 - Service or kit Yes
RACE-2_U 6 6 7 230-280 UMI Service or kit Yes
RACE-3 2 2 3 ~150 - Kit Yes
RACE-4 3 5 4 ~150 - Lab protocol Yes

For each method, an average rank score for TRA (top) and TRB (bottom) sequencing was calculated for replicability, reliability and sensitivity (first three columns), and practical information was

summarized (last four columns). Ranks were calculated as the average of the ranks for results from Figs. Te, 2c, 3b and 4c for replicability; Figs. 1e, 2b, 4b and 5a,b for reliability; and Figs. 4c and 5b and
Supplementary Figs. 2a and 5c for sensitivity. Rank values range from 2 (best) to 7 (worst). Details are provided as Supplementary Data 1. Cost per sample is expressed in US dollars as per current prices for
a depth of 1 million TCR sequences per sample on a 25-million-reads sequencing format. The costs cover reagents for library preparation to sequencing. *®mPCR1 and mPCR3 price ranges correspond to the

cost for purchasing either kits (lowest price) or service up to sequencing and basic data analyses from the provider.

Barennes, NBT, 2020

— Replicability: the
ability of each method to
reproduce the same
repertoire from different
sub-samples from the
same individual)

— Reliability: the extent
to which different methods
record the same results
when applied to the same
sample

— Sensitivity: capability
of a given method to
capture low abundant
clonotypes



AlIRR-seq errors may compromise immunological interpretation

Germinal center
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Reliable cloning of functional antibody variable domains from
hybridomas and spleen cell repertoires employing a reengineered

phage display system

Anke Krebber, Susanne Bornhauser, Jorg Burmester, Annemarie Honegger,

Jorg Willuda, Hans Rudolf Bosshard, Andreas Plickthun *

Biochemisches Institut der Universitit Ziirich, Winterthurerstr. 190, CH-8057 Ziirich, Switzerland

Journal of Immunological Methods 201 (1997) 35-55



Unique molecular identifiers (UMI) for error correction

Experimental library preparation using Unique Molecular Identifiers (UMis)

MRBNA or cDNA UMIs are

molecules each degenerate nt

of clone Xand Y sequences

— — Addition of UMIs
g (ligation, RT)

s (5’ - NNNNNNNN - 3")

UMIs also known as barcodes,
primer IDs, UIDs, molecular
tags, molecular identifier groups

Error correction by grouping UMIs and
building a consensus sequence

No consensus
—» sequence possible
when UMI count < 3

WWw MDMNON ==

il

Each mRNA/cDNA is
tagged with a UMIs

Bias correction by counting UMis

PCR and NGS introduces errors and bias

o AL A

Oriqinal : : Clonal ; Clonal True clonal
Clone: cogunt . # Reads : # UMI : frequency based: frequency frequenc
: : E i on # reads based on # UMI 9 y
X 3 8 3 0.533 0.6 0.6
Y 0 7 2 0.467 0.4 0.4

Fan, PNAS, 2011.
Kinde, PNAS, 2011.
Kivioja, Nature Meth,

Jabara, PNAS, 2011.
Shiroguchi, PNAS, 2012.
2011. Lundberg, Nature Meth, 2013.

Khan, Science Advances, 2016



AlIRR-seq error correction

Validation of UMI error correction via spike-in design

FR1 forward

A sngepiexper Pimersel N

IGHJ1-6)

ddPCR
forward primer

ddPCR

isotype-specific IGH RT and PCR
spike-in probe

reverse primers

E E Eﬂ - - hﬁ 2oz, u 5 EE :-gﬂw = Wi ﬁz EEH =H = E E
B of.m B 8ociifuaBladel B0 . SBoE.ob, JECUR:RIA0.cz SuplzbaBog 25 AHon 208223008,
Eﬁﬁ’%s“%ﬂagaﬁﬁﬁE%gaﬁggaggggﬁgﬁg'“‘Egg'égaées?%ﬁ@;agﬁé ke
ik a5, v, e

AR =
APMNEMERTEAR

AT EANINTRAN

ARGRAT A LUER
ARVANILLACAKE
ARTHELSLAND
ARLANA DELREY
FAMY SMART

AFGRFA TRETMEA T
ARSELFIESTICK

Edit distance :i“ﬁﬂ:ﬁ‘“?}?;
(nucleotides) ) AR
0-8 i
- ﬁ LkIATFGE.
W AR o i -
16-21 AT 8
2227 AR, sEite

Gene segment family/subclass

IGHV1
I IGHV2
IGHV3

IGHV4
IGHVS

IGHV6
IGHV7

IGHJ1
IGHJ2
IGHJ3
IGHJ4 . IGHG2

IGHJ5 | | IGHG3
IGHJ6 IGHG4

L L L L L L]
LE L L L L]
SRR EEE
LA L L L L L L
L L L L L]
L LT

LA L L L LY L]
SESEASESIABEE

LL L L L L L L L
LL LR L LT
SRR RBEAREES

[ LLA L L UL L L LSl
L aeasssssssssseEs
|  asasssssssEseREs

using UMI (mouse and human)

100% clonal error correction across all 16 spike-ins

Clonal variants for spike-in clone: CRISTINAW

MAF-corrected

Uncorrected
24 clones

1 clone

98% intraclonal error correction across all 16 spike-ins

Intraclonal variants for spike-in clone: CRISTINAW

Uncorrected
178 intraclonal variants

MAF-corrected
3 intraclonal variants

Khan, Science Advances, 2016
Friedensohn, Front Imm, 2018



Another benefit of UMIs: exclusion of sample contamination

Greiff, Cell Reports, 2017.

overlapping clones
can be biological

AN
/

overlapping clones
can also result from

contamination

Mouse 1
NBC

Mouse 2
NBC

Unique tagging of each mRNA molecule in RT step with UMI

—>

RT

NBC1

w7

/\/::\

4
/W/‘Q

\ 4

WS
W‘:@WQ/ NBC2

RT

PCR library preparation and handling

\ 4

Overlapping clones with different tags must be biological

reads

NBC1

LHMA

MKAV
ADFI
CDLK
RFET
DKLD
PRST

ermD - regds

RWDY

nevs  NBC2

KLMN

VSDF

KGBR

CDRS3 overlap (%)

UID overlap (%)

UID overlap
of overlapping CDR3s (%)

HBsAg7_nBC2+

HBsAg7_nBC1 -

NP-HEL2_nBC2-

NP-HEL2_nBC1 -

0.23 @ 0.46 | 3.09 0.1 0.13  0.14 0 0 0 ~
0.62 @ 0.25 0.14 | 0.11 0 0
7.15 0.12 0

T T T T
NP-HEL2_nBC1 NP-HEL2 nBC2 HBsAg7 nBC1 HBsAg7_nBC2

T T T T
NP-HEL2 nBC1 NP-HEL2 nBC2 HBsAg7 nBC1 HBsAg7_nBC2

T T T T
NP-HEL2 nBC1 NP-HEL2 nBC2 HBsAg7 nBC1 HBsAg7 _nBC2

No contamination



) Issues in UMI use: errors in UMIs

A library of 100 UMIs (barcodes) showed 7 false
positives in top 100

-
o

o Expected sequences

-
o
=

o False-positive barcodes
10

o 000

102
103
10
10

Relative barcode abundance (%)

10 o 1 L] L] L] L] L)
0 100 200 300 400 500

500 most abundant barcode sequences

Deakin, Nucleic Acids Res, 2014.

- y

N

Overestimation of diversity due
to errors in UMIs (PID)

AG
AG
AG
AG

AG
AG
AG

PID

ATGGCCTG.
. ATGGCCTA.
ATGICCTG.
. ATGGCCLCG.
AG.

GTGGCCTG.

. ATGECCTG.
. ATGGC, TGA

ATG.CCTGA

AGTATGGCCT. .

CACT.G.CTATT
CACE.G.CTATT
CACT.G.CTATC
CACT.G.CTAET
CACT.GECTAT.
CACTAG.CTAT.

Brodin, PLoS ONE, 2015.
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;
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o
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— Setting a UMI threshold (n=>3—4)
to eliminate erroneous UMI diversity

0.10-

0.05-

0.00

0.10-

0.05-

0.00

Overseq

\

N

Collision

1 Bl

100

10,000

Sequencing reads per UM

y

Egorov, J Immunol, 2015.



II) Issues in UMI use: undersampling of UMIs

— High-diversity repertoires (>500,000 unique clones)

1200000 — — such as naive B cells may not be sufficiently covered
m using UMI technolo
2 1000000 — Only reads with a UM| (UID) g gy
% diversity of n>1 may be used for
o 800000} downstream statistical analyses CDRS overlap (°/o)
-
S 600000
D
-
£ 400000}
3 HBsAg7_nBC2+ 0.23 | 0.46 | 3.09
200000} - /
0 -
0 2 4 6 8 10 12 14 16
Number of Reads HBSAg?_n BC1 ] -62 0.25

in UID group Vollmers, PNAS, 2013

NP-HEL2_nBC2- /7.15

is not sufficient. For example, introducing a hard cutoff that discards

all UMIs with fewer than five reads leads to a decrease in observed

TCR diversity. UMI-based methods might be more accurate for

assessing clonotype frequency, in line with their use to quantify and C
correct tgor PCRYfI:)rrorsqalnd b}ifas‘“. Furthermore, a thre(slhold 0};2—4 N P_ H E L2_n B 1
reads per UMI efficiently protects against artifacts and cross-sample

contamination®’, which become critical with tighter cluster density

on modern Illumina machines. UMI-based methods might require l l l l
several replicates or higher sequencing coverage to consistently and NP-HEL2_nBC1 NP-HEL2_nBC2 HBsAg7_nBC1  HBsAg7_nBC2

unambiguously identify rare TCR sequence clonotypes. Notably, :
both RACE-1 and RACE-2 methods performed better after UMI Greiff, Cell Reports, 2017

correction (see Table 1).
Barennes, NBT, 2020

— Expected CDR3 overlap: 14% (Figure 5 in
Greiff/Menzel et al. , Cell Reports, 2017).



Variable region

/ N\

High-throughput annotation of AIRR-seq data

FR1

CDR1

Zoom in of Variable region

FR2

CDR2

FR3

CH1...

N--D-N FR4

Defines the clone
Diversity >3 x 107

Total Variable Region
/ A.A.Diversity ~5 x 10"

Annotation of D-region is unreliable

Data Platform % of wrong | % of wrong | % of wrong | % of wrong
V genes D genes J genes CDR3
Synthetic
TRB
MiXCR 0.0 35.3 0.2 0.4
IMGT 0.6 21.6 9.3 19.0
Decombinator 3.8 N/A 2.3 N/A
IgBlast 0.0 28.5 0.0 N/A
Synthetic
IGH
MiXCR 0.0 27.8 0.2 1.6
IMGT 1.3 54.4 11.6 141
IgBlast 0.0 20.3 0.0 N/A

Bolotin, Nat Met, 2015

https://b-t.cr/t/list-of-v-d-j-
annotation-software/18

Dedicated aligners

o BRILIA 24 (Leeetal 2017 5)

» CloAnalyst 30 (Kepler 2013 5)

« Decombinator 17 (Thomas et al. 2013 @) : uses a finite state automaton

e iHMMune-align 16 (Gaeta et al. 2007 2 ) : Hidden Markov Model

o IgBLAST 14 (Ye et al 2013) : highly tuned BLAST

o IgSCUEAL 11 (Frostetal 2015 7) : phylogenetic placement

« IMSEQ 10 (Kuchenbecker et al 2015 1)

« Joinsolver 6 (Souto-Carneiro et al. 2004) : webserver only

« MiXCR 16 (Bolotin et al 2015 3)

« partis 10, also ighutil & (Ralph and Matsen 2016 5)

« repgenHMM 3 (Elhanati et al. 2015 2)

« SoDA (binary available in Automation) & (Volpe et al. 2006 6 ; see also Munshaw and Kepler
2010)

« VDJFasta 13 (Glanville et al. 2009 4)

e VDJsolver 7 (Ohm-Laursen et al. 2006 2)

Alignment wrappers and webservers

« Change-O 19 (Guptaetal. 2015 2)

e IMGT V-QUEST 5 (Lefranc et al 2008)

e |ImmuneDB 12 (Rosenfeld et al. 2017 2 ) : implements alignment method described in (Zhang et
al. 2015)

« SONAR 8 (Schramm et al. 2016)

o VBASE2 3 (Retter et al. 2004)

Without publications

e abstar 11 : Python; focus on scale-up

o MIGMAP 2 :wraps IgBLAST and includes extra features
e IgValve 5 : Ruby, for validation

e vdj 12 :Python; last update 2014

Analysis of TCR and
BCR data

Prediction of
germline sequences

Extraction of FR/
CDR/constant
region (CR)

SHM extraction

Reference
numbering scheme

Max number of
sequences per
analysis

Processing of
unigue molecular
identifiers
Consideration of

sequencing quality
information (Phred
scores)

Speed (standard
dataset of 1 x 10°

reads)

Supported input
format

Platform

IMGT/

High-V-Quest [62]

TCR and BCR

Yes

FR, CDR

Yes (but
V region only)

IMGT

<500 000

No

No

FASTA

Online

IgBlast [123]

BCR

Yes

For V region only

(until V-part of
CDR3)

Yes (entire V(D)J
region)

IMGT/Kabat/
NCBI

~1000 (online)
Unrestricted
(standalone)

No

No

Hours

FASTA

Online/stand-
alone

iIHMMune-align
[124]

BCR

Yes

No

Yes (entire
V(D)J region)

UNSWIg

~2 Mb (Online),
Unrestricted
(standalone)

No

No

Hours

FASTA

Online/stand-
alone

MIGEC [45]

TCR and BCR

No

CDR3

IMGT

Unrestricted

Yes

Yes

Minutes

FASTQ

Stand-alone

MIXCR [56]

TCR and BCR

Yes

FR/CDR/CR

Yes (entire
V(D)J region)

IMGT

Unrestricted

No

Yes

Minutes

FASTA, FASTQ

Stand-alone

Greiff, Trends Immunol, 2015



Genetic source of repertoire differences: germline gene loci

Allelic [ Vgenes g D genes IG heavy chain locus I I. t. . d.
-+ . =
el 000 : ———— mplication in disease
. = + 4 - 1 + |
| -+ 4 ¥ 7 A R i B
Telomeric & i o Centromeric Open Access | Published: 16 February 2016
Junctional . o o
diversity IGHV1-69 polymorphism modulates anti-influenza
P-and N-nucleotides o . * epe -
R — N A antibody repertoires, correlates with IGHV utilization
\
_- a | | B Yuval Avnir, Corey T. Watson, Jacob Glanville, Eric C. Peterson, Aimee S. Tallarico, Andrew S.
L Transcription —— Bennett, Kun Qin, Ying Fu, Chiung-Yu Huang, John H. Beigel, Felix Breden, Quan Zhu & Wayne A.
Heavy and light chain pairing
variable domain Constant domain Marasco
o A 2 ‘ J “MI:
Soimisitie T ——— e f@wﬂ ‘-k} f’ e Scientific Reports 6, Article number: 20842 (2016) | Cite this article
hypermutation ' - . ~.= 7 i J Constant : C L
(Foseantgan P tghtchain =1 domain Brief Definitive Report | February 17 2014
stimulation) S — _':_

Hoarycrin [ Epitope-specific antibody response is controlled by
Watson, Trend Imm, 2017 immunog|0bUIin VH pOIYmorphismS

Collins, Curr Op Sys Bio, 2020 Brﬂuno .Raposo, Doreen Dobritzsch, Changrong Ge, Dianﬁa Ekm.an, Bingze Xu, Ingrid Lindh, Michael Forster,
Hiseyin Uysal, Kutty Selva Nandakumar, Gunter Schneider, Rikard Holmdah| &4

Allele databases Experimental and computation allele/haplotype detection

e Inferred Allele Review Committee (IARC) , , , .
e — b | -Germline gene alleles might differ by ethnicity.
3::::‘” \II)Veggme]to OGRDB - the Open Germline Receptor u rpose '
AIRR Gommunity al ase!
ragiinad The Inferred Allele Review Commitiee was formed after the third AIRR-Community meeting in . .
Help N?VZ‘EE‘:SE;";“;Z'?;:i’:ji.”;‘;’t:i:i?;“f’ has publshec 2 paper announcing and Rockville, MD in December 2017. The IARC is responsible for judging the validity of germline ¢ I d ea I Iys g e rm I I n e g e n e refe re n Ce d ata bases fo r a n tl bOd y Seq u e n Ce
SR EDEEEEEET T | et emamesure commtes ot g kst o annotation should be compiled for each individual (Corcoran, Nat
Sﬁ:ﬂn o st N Trze::i:\ ::a:::L:Zunr::df::::::: ::istics. inferred sequences, and evidence in support of their existence, available to the AIRR C O m m . 2 O 1 5 y G a d a | a - M a rl a y P N AS y 2 O 1 5 y Ra | p h y P LO S CO m p B | O y
community and other researchers. The work of the committee will initially focus on human 20 1 9 Pe reS 20 1 9 B | O | nfo rmatICS G |d On | 20 1 9 N at CO m mS O me r
’ ’ )

VDJbase: an adaptive immune receptor
genotype and haplotype database 3

Aviv Omer, Or Shemesh, Ayelet Peres, Pazit Polak, Adrian J Shepherd,
Corey T Watson, Scott D Boyd, Andrew M Collins, William Lees, Gur Yaari &
Author Notes

2020 Bioinformatics, Rodriguez, Frontiers in Imm 2020)



Summary: Error correction and annotation of AIRR-seq data

-Biologically conclusive AIRR-seq depends on deep coverage of immune repertoires.
Coverage may be assessed via replicates and species accumulation curves

-AIRR-seq library preparation can introduce numerous errors: primer bias, PCR bias

-Error correction can be performed both experimentally (e.g., UMI, replicates) and
computationally (e.g., clonotype clustering, exclusion of singleton reads)

-UMI-based error correction may not not applicable for highly diverse sample

-Numerous AIRR-seq sequence annotation tools exist. However, care should be taken when
choosing the reference genome in order to avoid introducing artificial diversity or mutations

- Identification of germline gene alleles enables more accurate germline gene annotation and
SHM quantification | potential link between germline genes and antibody-antigen
binding/disease



Outline

Introduction to Adaptive immune receptor repertoire sequencing (AIRR-seq)

- Generation of iImmune repertoire diversity
- Workflow and applications of AIRR-seq

Error correction and Standardization of AIRR-seq data

- Experimental design and considerations

- Error and bias correction
- Standardization

Single-cell AIRR-seq
- Pairing by targeted amplification
- Single-cell sequencing

Computational strategies for immune repertoire analysis

- Diversity and convergence analysis
- Network analysis
- Machine learning



Issues In bulk AIRR-sequencing

d Cell isolation Template purification Molecule amplification

—
—

J
Vidy
multiplex

Y

5T mAnA El— AAA 3
i mupler” Loss of pairing

— i

5T maNA El— AAA 3 VH % VL

1Il||r|-t"':t-|

multiplex TCRa % TC RB

5] mRNA THE— AAA T
5 RACE

Input material: Methods:

DNA - Multiplex PCR
RNA - RACE

Georgiou, Nature Biotech, 2014.



Benefits of single-cell sequencing: gene expr. info and error corr.

a Bcell 1 B cell 2 b X RT-PCR error
X Sequencing error
MR  feeX—x &8%=X  |Benefit 3:
ADA H— CCC—>— GGG
AARS—  CCC GGG Reduce error by
ARA—Y— GGG GG =— cell barcoding
AAA ——— CCC —é— —OE
ﬁ CCC %—
AAA cee GGG l &
o .. AART  CCC I — ARA cce GGG
Add unique oligonucleotide 237 GGG GGG —— Error-corrected consensus SeqUences
cell barcodes to 5' end m— EEE % _—
] of all cDNA from each cell — p—
Benefit 1: AAA—— GGG GGG —— c ,
Si It | AAA —— CCC GGG —— I Uf 14l
IMmuitaneousiy s RepY M;
measure TC R, B Mix cell barcoded cDNA ‘ &, | -'f‘ 5 Vi
cell lg, and gene W,ﬁgﬁcggc--.__ 06— Aaa—_ ¥ \‘
expression in the e CCe—0oL N f
same sample ARA—— _— e i ==1 _
PCR amplify IgH, lgL, | = — = |Benefit 4:
coexpressed genes ‘ - ﬁ Obtain correct
i High-throughput sequencin " SO
Benefit 2: R Biumfmmaﬂci | 3 Sl clonal frequency
_ 3 ' rankin
preserve Igh Paired IgH, IgLand  ,an . ooc P g g
IGL, TCRa-TCRb coexpressed functional ARA——  CCC a0 —— ?
pairing gene sequences Pe— fr— E
w
L=
>
Coexpressed c
IgL mRNA —— IgH mMRNA — functional gene Cell barcode

Stubbington, Science, 2017 Robinson, Nat Rev Rheu, 2014



A Rosetta Stone for immunology Is needed
to map iImmune receptors to antigen recognition

= —/—-—< actctg...
_/-E-:-‘-\-Lz-< cactgc...

-——~—Xf-3N2< gctaca...
\|"8N1, CaCth..-

Immune memory

Immune memory Immunity-informed
(But not readable)

decoded vaccine design

Immunological
rosetta stone

Analysis of immune memory dgvelopment . Studying how the immune system sees. Simulation of immune system
(Phylogenetic analysis) intruders (molecular and structural analysis)

https://www.vaksinebloggen.no/vaccine-research-in-need-of-a-rosetta-stone/
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Novel technologies for linking immune receptor sequence to function

Assess the binding specificities of over 150,000

CD8* T cells from 4 human donors across
a highly multiplexed panel of 44 distinct,
specific peptide—MHC (pMHC) multimers
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cDNA Amplification

Letter | Published: 30 March 2020

High-throughput single-cell activity-
based screening and sequencing of
antibodies using droplet microfluidics
Annabelle Gérard, Adam Woolfe, [...] Colin Brenan

Nature Biotechnology (2020) | Cite this article
4716 Accesses | 134 Altmetric | Metrics

High-Throughput Mapping
of B Cell Receptor Sequences [ @:)|
to Antigen Specificity
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Masaru Kanekiyo,® Juliana S. Qin,! Kevin J. Kramer,-® Allison R. Greenplate,” Wyatt J. McDonnell, 2917
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Cells Mixed with

LIBRA-seq

DNA-barcoded Antigens

O

Functional
_/ Validation

-

\2

Monoclonal

Antibody

Sequence

Antigen
Screening
Library

Min Max

LIBRA-seq score

A

Determinants governing T cell receptor o/p-chain
pairing in repertoire formation of identical twins

Abs

. Neutlizatin " )

Confirmation of Predicted \
Antigen Specificity |

Antigens

____i

Identification of a Previously
Unknown HIV-1 bNAb

Virus Variants

o BT W

Low Hiﬂh

An integrated immune discovery solution
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Massively parallel interrogation and mining of
natively paired human TCRap repertoires
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Open software for analysing AIRR single-cell data

S I[mmcantation Tutorials » 10x Genomics V(D)J Sequence Analysis Tutorial
© Edit on Bitbucket

10x Genomics V(D)J Sequence Analysis Tutorial

Overview

This tutorial is a basic walkthrough for defining B cell clonal families and building B cell lineage trees
using 10x Genomics BCR sequencing data. It is intended for users without prior experience with
Immcantation. If you are familiar with Immcantation, then this page may be more useful.

Knowledge of basic command line usage is assumed. Please check out the individual documentation
sites for the functions detailed in this tutorial before using them on your own data. For simplicity,
this tutorial will use the Immcantation Docker image which contains all necessary software. It is also
possible to install the packages being used separately (see pRESTO, Change-O, and Alakazam).

Scirpy: a Scanpy extension for analyzing
single-cell T-cell receptor-sequencing data 3

Gregor Sturm, Tamas Szabo, Georgios Fotakis, Marlene Haider, Dietmar Rieder,
Zlatko Trajanoski, Francesca Finotello

Bioinformatics, Volume 36, Issue 18, 15 September 2020, Pages 4817-4818,
https://doi.org/10.1093/bioinformatics/btaa611
Published: 02 July 2020 Article history v

SOFTWARE TOOL ARTICLE

CEER) scRepertoire: An R-based toolkit for single-cell
immune receptor analysis [version 2; peer review: 2
approved]

2a* Nicholas Borcherding ¢:3 74, Nicholas L. Bormann?®, Gloria Kraus®

4+ Author details

> immunarch — Fast and Seamless Exploration of
Single-cell and Bulk T-cell/Antibody Immune
Repertoiresin R

Why immunarch?

Work with any type of data: single-cell, bulk, data tables, databases — you name it.

Community at the heart: ask questions, share knowledge and thrive in the community of almost 30,000 researchers and medical
scientists worldwide. Pfizer, Novartis, Regeneron, Stanford, UCSF and MIT trust us.

One plot — one line: write a whole PhD thesis in 8 lines of code or reproduce almost any publication in 5-10 lines of immunarch
code.

Be on the bleeding edge of science: we regularly update immunarch with the latest methods. Let us know what you need!
Automatic format detection and parsing for all popular immunosequencing formats: from MiXCR and ImmunoSEQ to
10XGenomics and ArcherDX.
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Caveats single-cell analysis

- Reduced throughput as compared to bulk seq

- Benchmarking of technology still in its infancy (keep in mind that even bulk-
sequencing is still not fully standardized and mostly incomparable across
sequencing protocols and technologies)

- Data analysis pipelines (downstream of data processing) are mostly

developed for bulk-sequencing and cannot be readily transferred to single-
cell seq (how to treat paired information in data analysis remains unclear)

44



Summary: Single-cell AIRR-seq

-Bulk and single-cell (b/sc)AIRR-seq allow asking different research questions

-bAIRR-seq remains the state-of-the-art in case deep coverage of immune repertoire
diversity is the main research focus

-SCAIRR-seq preserves pairing information and is therefore superior if exact clonal/pairing
information is needed such as for: phylogenetics, and antibody/TCR engineering

-SCAIRRseq allows stricter error correction and coupling of transcriptome and repertoire
analysis

-Recently several scAIRR-seq approaches and (commercial) platforms have emerged.
However, given their relative niche presence, they have not been sufficiently compared
and validated by a wider community (e.g., spike-in controls)



Outline

Introduction to Adaptive immune receptor repertoire sequencing (AIRR-seq)

- Generation of iImmune repertoire diversity
- Workflow and applications of AIRR-seq

Error correction and Standardization of AIRR-seq data

- Experimental design and considerations

- Error and bias correction
- Standardization

Single-cell AIRR-seq
- Pairing by targeted amplification
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Computational strategies for immune repertoire analysis

- Diversity and convergence analysis
- Network analysis
- Machine learning



Computational strategies for dissecting the high-
dimensional complexity of adaptive immune repertoires
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Charlotte M. Deane
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Miho, Front Imm, 2018

—Given the similarity of
antibody and T cell receptor
genomic structure, most
computational analyses
can be applied
interchangeably

— For an in depth overview
of current computational
strategies and future
directions for immune

repertoire analysis, please
refer to

* Rosati, BMCBiotech, 2017
 Miho, Front Imm, 2018

» LOopez-Santibanez-Jacome,

Peerd, 2018

 Brown, MSDE, 2019

* Bradley, AnnRevimm, 2019

* Lees, Curr Op in
SysBio2020



Exemplary list of comp. tools for immune repertoire analysis

Most tools are written in python
and R (with C/Java being used to
Improve performance of certain
subroutines)

— For an in depth overview of current
computational strategies and future
directions for immune repertoire analysis,
please refer to

 Rosati, BMCBiotech, 2017

 Miho, Front Imm, 2018

» Lopez-Santibanez-Jacome, Peerd, 2018
 Brown, MSDE, 2019

« Bradley, AnnRevimm, 2019
» Lees, Curr Op in SysBio2020

— Diversity tools can be
subdivided into 3 groups: (i)
iInference of germline gene
diversity, (ii) inference of VDJ
recombination statistics, (iii)
guantification of clonal diversity

— While igraph and networkx are
predominantly used for
quantification of network
measures, cytoscape and
gephi’'s main purpose is to
visualize networks

— Phylogenetic methods are
being used exclusively for
antibody data since SHM is
absent from T cells.
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Quantifying and comparing the diversity of immune repertoires

Repertoire 1

How are immune receptors distributed within a repertoire?
-uniform or uneven?

How does one compare those distributions across repertoires?



Quantifying repertoire diversity using diversity indices |

Antibody sequence Antibody frequency [%o]

—
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Quantifying repertoire diversity using diversity indices |l

i i - B log (Species richness) :=
Renyi entropy (new coordinate 0 =0 number of unique immune
system) receptors

1
HO{ —_— lOg(E fla) o= 1 —Efilogfi Shannon entropy

\/
1 - a j |
o=2 1— Efz log(Simpson’s index)

Antibody frequency distribution:

The higher alpha, the higher is ]7 =(3.0,1.3,09,0.7,...)"
the weight of abundant

sequences

maX(f log(Berger-Parker

index)



Repertoire 1 (33,29,28,5,5)%
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Challenges in repertoire diversity analysis |
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distributions

* Dataset 1
 Dataset 2

Challenge 1:

Rényi entropy is difficult to
Interpret biologically

Challenge 2:

Single diversity indices are
insufficient to capture the
sequence frequency space
(qualitatively different results
for different indices)



Challenge 1: Biological interpretation of diversity

H, log(z £

1 o

exp ([—]a) Example: Repertoire X is composed of 5
antibody sequences with a given frequency
distribution (75,15,5,4,1)

(1/1—a) “=1D(Repertoire X) = 2.28

N
o Interpretation: The diversity of repertoire X
Z f Is equivalent to a repertoire composed of
=2 clones with equal frequency (50,50)

Hill-diversity (also termed: True
diversity, effective number of species)



Challenge 2: capturing the entire frequency space using

diversity profiles |
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10°-
S
5 -1 8
- <
=) 2
() n
=102 5 100-
© W Low clonal expansion S
E) mmw High clonal expansion
O

107°-

10—4_

10°  10°° 10" 10"° 10° 0.0 25 5.0 75 10.0
Clonal rank o
Zipf's law C x g~ Zifa—1 (< 7 < Zipt-B
( ) ? p
: : : g\mw) .= .
(power law distribution) 0, otherwise.

Greiff, Genome Medicine, 2015



sample

Diversity estimations
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Quantifying sequence convergence based on entire sequences

Shared immune receptor sequences (public
clones) across individuals

Castro, Dev & Comp Immunel, 2017

Shared subsequences (su
individuals

ANB
overlap = —, x 100
min(|A[, [B])
ANB
overlap = x 100
max(|Al, [B)
ANB
lap = 1
overlap mean(Al. |B) x 100

Glanville, PNAS, 2011 (Figure 4)
shugay, PLoS Comp Bigl, 2015
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pertoires =IGoR

Inference and Generation of Re

Inferring the recombination statistics of immune repertoires

V(D)) i

B s ] s— a IGoR lists putative recombination

scenarios consistent with the observed
sequence, and weighs them according to
their likelihood.

Sample
(blood, lymph,...)

Sequencing

Expectation
Maximization

— Distinguish between
convergent
recombination and
convergent selection

Recombination
scenarios

-
.

b The likelihood of each scenario is
computed using a Bayesian network of

b dependencies between the recombination T
features (V, D, J segment choices, insertions and - D'_St'“gu'Sh between
deletions), as illustrated here for the human TRB public clones due to
locus recombination and those
due to antigen-driven
P(scenario) = P(V)P(/),.J) -
x P(delV|V)P(Del D5/, Del D3| D) P(del | J) selection
><P(hls\-"]))IrﬁDP(n,;|u_,- ) , ] . .
c IGoR’s pipeline includes three modes. In the
c Pl I ree - learning mode, IGoR learns recombination statistics
ynthetic i
Sequences from data sequences. In the analysis mode, IGoR
:——_...?98:_.[ VAN < outputs detailed recombination scenario statistics for
Sequencing  IGoR  Recombination oris each sequence. In the generation mode, IGoR curther erature:
statistics produces synthetic sequences with specified mi[ﬁ’g:;“ﬁ o
recombination statistics. Elhanati, Phil Trans R Soc B, 2015
Marcou, Nat Comm 2018 Elhanati, Bioinformatics, 2016

Sethna, PNAS, 2017
bitbucket.org/gmarcoul/igor



Predicting TCR public clone occurrence by modeling VDJ recombination

simple model of thymic selection. Whether a sequence is shared by many individuals is

predicted to depend on the number of queried individuals and the sampling depth, as

well as on the sequence itself, in agreement with the data. We introduce the degree of

publicness conditional on the queried cohort size and the size of the sampled reper-

toires. Based on these observations, we propose a public/private sequence classifier,
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Prediction of TCR binding from the sequence by exploiting convergence

TCR1

Vo=TRAV21/DV12

Jo=TRAJS53

Epitope-specific TCR
repertoires of CD8+ T cells /
from mice and humans,
representing over 4,600 in-
frame single-cell-derived
TCRaP sequence pairs
from 110 subjects
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Summary: Measuring immune repertoire diversity

- Diversity is one of the hallmark features of adaptive immune repertoires. Therefore,
its measurement lays the foundation for the majority of repertoire statistics

- Diversity can be quantified using methods borrowed from mathematical ecology

- Diversity profiles are superior to single diversity indices when comparing clonal
frequency distribution across samples

- Diversity holds immune information (the extent of which remains unclear)
- VDJ recombination statistics can be inferred using Bayesian statistics

- Repertoire convergence (overlap) may be quantified from several perspectives and
may be leveraged for the prediction of antigen specificity



Networks for the analysis of antibody repertoire architecture
(sequence similarity among sequences within a repertoire)

A
- % Diversity analysis provides
.("% no information on sequence
& @ similarity
- 2 @ CARAGKDYW
O
©
] " )
Antibodies

Network analysis
resolves the similarity

relation (architecture) of
antigen receptor sequences

CARAGKDYW

Together, diversity and network analysis
resolve the frequency and similarity information 1/(1-q)
of immune repertoires q _ qg—1 —
- Ds = (XipiSiT)

Arora, bioRxiv, 2019



Building networks from immune repertoire sequence data
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Quantitative analysis of immune repertoire networks
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Insights into AIRR biology afforded by network analsis |

T cell receptor repertoires of mice and humans are clustered in
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Further literature:
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Insights into AIRR biology afforded by network analsis I|

— Network structure
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IS redundant across
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Insights into AIRR biology afforded by network analysis |l

Detecting T cell receptors involved in immune responses
from single repertoire snapshots

Mikhail V. Pogorelyy B, Anastasia A. Minervina 3, Mikhail Shugay, Dmitriy M. Chudakov, Yuri B. Lebedev, Thierry Mora B3 =],
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Summary: Measuring immune repertoire architecture

- Network architecture determines antigen recognition breadth

- Quantitative and not visual analysis of antibody networks allows insight
iInto the construction principles of antibody repertoires

- Construction of large-scale networks (>10° clonal sequences) requires
high-performance computing

- Public clones play a special (but yet undetermined) structural role in
antibody and T cell networks



Phylogenetics: retracing antibody evolution

Figure 1: Deciphering bIN Ab development in an HIV-1-infected subject to guide vaccine strategies.
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Most common methods used for phylogenetic inference
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Recent advances in AIRR phylogenetic analysis:
tree significance and incorporation of antibody affinity

RESEARCH ARTICLE

Using B cell receptor lineage structures to
predict affinity PLOS Comp Biol 2020

Duncan K. Ralph*, Frederick A. Matsen IV

New Results ¢ Comment on this paper

Phylogenetic analysis of migration, differentiation, and class switching in B cells

Kenneth B. Hoehn, Oliver G. Pybus, Steven H. Kleinstein

doi: https://doi.org/10.1101/2020.05.30.124446

Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
This article is a preprint and has not been certified by peer review [what does this mean?].

* dralph @fredhutch.org

o Statistical method for characterizing migration, differentiation, and isotype

» A method that uses evolutionary information from the family of switching along B cell phylogenetic trees.
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Summary: Retracing antibody evolution (phylogenetics)

- Antibody evolution is a hallmark feature of the antigen-driven adaptive immune
response: its faithful reconstruction may lead to profound insight into the
mechanisms of selection that govern the formation of antigen-specific repertoires

- Many methods exist for phylogenetic inference: they do not only differ in
assumption and speed but may also differ in the resulting lineage trees

- Recently, progress has been made in coupling antibody abundance with antibody
sequence information in order to more accurately reflect antibody evolution

- Mutability maps may help in increasing the accuracy of phylogenetic models

- Comparison of tree topologies remains a crucial challenge



Machine learning: a general overview
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Machine learning enables the deciphering and prediction of immune receptors
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Specific biological and machine learning challenges for immune receptor research
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Machine learning approaches applied to adaptive Immune receptor data
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Multi-class accuracy assessment

Macro: biases your metric toward the least populated classes.

n TP; n TF;
y:i—l (TP;+FP;) Recally, — y:7,—1 (T P;+FN;) 2 X Prepr X Recy

F—score; =
n n Preps + Recy,

Precision;; =

Micro: bias your metric towards the most populated classes.

2 X Pre, x Rec,
Pre, + Rec,,

y: TP S TP
L= Recall, = 1=
y:zl(TP%—FP) y:z (TP, + FN;)

Precision,, = k—score,, =

If macro << micro:
smaller classes are poorly classified, whereas larger ones are likely correctly classified.

If macro >> micro:
gross misclassification in the most populated classes, whereas smaller classes are likely correctly
classified.




Effects of MHC, age, and sex on AIRR
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Sex bias in MHC l-associated shaping of the adaptive
Immune system

Tilman Schneider-Hohendorf?, Dennis Gorlich®, Paula Savola®, Tiina Kelkka®, Satu Mustjoki¢, Catharina C. Gross?,
Geoffrey C. Owens?, Luisa Klotz®, Klaus Dornmair®, Heinz WiendI®, and Nicholas Schwab?®’

"Next-generation TCR variable beta chain (TCRBV) immunosequencing of 824 individuals was
evaluated in a multiparametric analysis including HLA-A -B/MHC class | background, TCRBV
usage, sex, age, ethnicity, and TCRBV selection/expansion dynamics. We found that HLA-
associated shaping of TCRBV usage differed between the sexes.”

Age-Related Decrease in TCR Repertoire Diversity Measured with Deep and Normalized Sequence Profiling

Olga V. Britanova, Ekaterina V. Putintseva, Mikhail Shugay, Ekaterina M. Merzlyak, Maria A. Turchaninova, Dmitriy B. Staroverov, Dmitriy A. Bolotin, Sergey Lukyanov,
Ekaterina A. Bogdanova, llgar Z. Mamedov, Yuriy B. Lebedev and Dmitriy M. Chudakov

JImmunol March 15, 2014, 192 (6) 2689-2698; DOI: https://doi.org/10.4049/jimmunol.1302064
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Generating immune repertoires with native-like immunosignature complexity for
benchmarking machine learning approaches

Disease/Antigen-specific motifs
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Create IGoR models and calculate the generation probability of V(D)J and CDR3 sequences.

For installation, use cases as well as a tutorial, please have a look at the ImmunoProbs documentation.




Development of a platform for AIRR machine learning

Current AIRR ML technical challenges:
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Necessary and interesting controls in (AIRR) machine
learning

. Label shuffling
. tests appropriateness of your class definition

. Shuffle class labels x-times —prediction accuracy should decrease converging towards
theoretical limit

- Randomize sequences
. tests how much information is in sequence and sequence nt/aa composition

- shuffle nt/aa order in sequences — prediction accuracy should decrease converging
towards theoretical limit if sequence composition is similar between classes

- Equilibrate sequence length between classes
. tests to what extent sequence length contributes to prediction accuracy

- Further controls: test effect of undersampling (real world robustness of classifier), evaluate
feature recovery to inspect immunological meaning of classifier, hyperparameter
optimization (for DL, random search might be more efficient than grid search), large
enough test data sets, benchmark ML approach on simulated data where ground truth
exists, balance by age, HLA, sex if possible



Summary: Classification, prediction and generation of AIRR data

- Machine learning (ML) is useful for classifying, predicting (diagnostics, repertoire-level) and generating
immune repertoires (therapeutics, sequence-level)

- ML can act on entire iImmune receptor sequence or on subsequences (k-mers) thereof
- ML provides information on the extent to which immune repertoires capture immune information

- Measuring accuracy of ML remains a challenge, as is standardisation, reproducibility and
generalizability

- Deep learning enables the capture of higher dimensional repertoire features. Its immunological
interpretation, however, remains a challenge

-High-quality training and test/validation data for machine learning remains scarce. It remains also a
qguestion what are good training and test datasets

- Adjust for confounders and covariates



Future directions and Outstanding questions

Outstanding Questions

How large of an effect does IG poly-
morphism have on the development of
the baseline naive repertoire, and what
types of genetic variation (CNV, coding
variants, regulatory variants) matter

Outstanding Questions

How to standardize HTS and the anal-
ysis of immune repertoires? An experi-
mental framework mimicking the large
diversity of immune repertoires for the
unbiased validation of HTS library prep-
aration methods (PCR, primer bias,
and error correction) is missing. Simi-
larly, a standardized repertoire simula-
tion framework for  validating
bioinformatics processing and analysis
pipelines remains to be developed.

Box 1. Future directions/major questions about repertoire dynamics.

Future directions

— Measurement of genetic variation in people and model organisms at B-cell receptor loci.

— Models of germinal centre dynamics that incorporate more types of data, such as B-cell receptor sequences, expression
information [138], antigen availability and B-cell position.

— Phylodynamics models to evaluate spatial dynamics in germinal centres and statistical models of evolutionary descent. most?

— Improved models of B-cell memory formation and recall, especially those that infer the amount of competition between
memory and naive responses for entry into germinal centres and between secreted antibodies and affinity-maturing
B cells.

— Development of phylogenetic methodology specialized to the intricacies of B-cell receptor sequence evolution.

Do effects of |G genetic variants on the
Ab repertoire correspond to known
biases in disease and/or clinically rele-
vant Ab responses?

—4{ Measurements of epitopes’ relative immunogenicities across individuals.

— Between-species comparative analysis, especially for vaccine model organisms such as ferrets and macaques.
— Variation of B-cell response across human subpopulations, especially in response to shared exposures such as vaccines.
Greiff, Trends Imm, 2015

— Specific impacts of autoimmune checkpoints on the evolution of naive and experienced repertoires. Wardemann, Trends Imm, 2017

— Diversity and evolution of germline genes among vertebrates (i.e. evolution of presence-absence).

— Better understanding of the effects of age and co-infection, in particular, for autoimmunity and allergies.

Questions

—i How can we approximate the genotype to phenotype map of B-cell receptors [139]?

— What are good models of sequence-based fitness landscapes for B-cell receptors? Are pairwise interactions between sites
enough, as found by the Ising versus Potts analysis in Mann et al. [140]?

— How does T cell help impact the general dynamics of affinity maturation and the selective pressures on specific clones?

— How do the general dynamics of affinity maturation differ between individuals and change with age?

How to compare the repertoires of
different donors? The repertoire is
shaped by multiple components (e.
g., heredity, historic exposure, current
exposure), so how can the noise in
interindividual comparisons be
reduced? Does this require normaliza-
tion against the mature naive B cel
compartment?

Can antibody reactivity be predicted

Personal view: outstanding questions

- Standardization of experimental protocols
- Methods for large-scale generation of antigen-annotated

AIRR data
Merging sequence analysis with structural modelling at
repertoire scale
Improve proteomic understanding of the antibody
L for o task I the pew g, repertoire
Watson. Trends Imm. 2017~ Methods for analysing paired chain data
Interpretability of machine learning approaches

—1{ When two genetically identical and naive hosts are immunized to the same antigen, how do their repertoires differ geneti- from sequence data? Although NGS
offers unparalleled throughput it does
not provide any affinity data and cur-
rent recombinant expression techni-
ques do not (yet) deliver the
throughput required for large-scale
screening of antibodies. While in silico
— Can we use germline gene loci or a sample of the naive repertoire to predict an individual’s responsiveness to a vaccine models are often presented as an

(14112 alternative, they are computationally

cally and phenotypically? How would differences in their naive repertoires, chance recruitment of naive B cells to the

response, stochastic dynamics of affinity maturation and other factors contribute?

— Can we use immune information to infer asymptomatic infections?
— Can we relate sequences from sampled repertoires to protection?

—i How is vaccine responsiveness affected by immune memory to other antigens?

— Can immune systems across individuals be classified into meaningful types, and can we use immune ‘type’ information
for stratified sampling in clinical trials?
— Holding infection history constant, are differences in B-cell repertoires important for pathogen evolution [142]?

Cobey, Philo Trans B, 2015

Structure of antigen-specific motifs implicated in the
prediction of antigen binding and immune status
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