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- Infection
- Disease
- Vaccination

• Bacteria
• Virus
• Cancer
• Autoimmunity
• Vaccine

‣ T1D
‣ Celiac disease
‣ Cancer
‣ Infection
‣ …

Immune history

=

B cell
(antibody)

T cell

Immune
memory

The adaptive immune system records each immune event over a lifetime



TCRs and BCR (antibodies) are natural diagnostics and therapeutics

Diagnostics

Therapeutics
- Potential TCR/Ab diversity: >1013



Key advances and challenges in adaptive immune receptor (BCR, TCR) analysis 

Brown et al., MSDE, 2019
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Jiang, 2017,  Curr Op in Biomed. Eng.

Antibody and T cell diversity is generated by VDJ recombination

There are also random nucleotides introduced at 
the junction of V, D and J genes. This creates an 
enormous potential diversity of antigen receptor 
sequences.

V D, J genes encode the variable domains of the 
antibody heavy and light chains and the T cell receptor 
(TCR) α and β chains 

One gene segment from each of the three groups of 
gene segments (V, D, and J) are randomly 
recombined to form new antibody or TCR sequences 
(VDJ recombination)

Unique to antibody or B cell receptor, its gene sequences 
can also change itself by introducing random mutations 
(somatic hypermutation, 10-3/bp/generation)

Progeny B cells become a mixture of sub-species 
(clones, clonal lineage), each expresses a different 
antibody sequence and is represented by different 
number of cells.



Immunogenomic architecture of antibodies and TCRs



Lavinder, Curr Op in Chem Bio, 2015

Genetic and proteomic analysis of the antibody repertoire

The functional antibody repertoire
consists of two major components: 

- the total set of BCRs expressed on the 
surface of B cells (genetic analysis)

- the collection of soluble gut and serum 
antibody circulating in the blood 
(proteomic analysis)

→ Both genomic and proteomic 
AIRR-seq lead to sequence data. 
Thus, all downstream 
computational analytic methods 
can be applied to both kinds of 
datasets



Immune Repertoire 
Sequencing

Isolation of T/B-cell 
population of interest

Adaptive immune receptor repertoire sequencing (AIRR-seq)

AIRR-seq = Adaptive immune receptor repertoire sequencing 



Greiff, Trends Immunol, 2015  

Georgiou, NBT, 2014

AIRR-seq measures central principles of adaptive immunity

Enormous diversity

Antigen-specific clonal selection and
expansion (evolution)



Public immune receptor databases (DB)

Shugay et al., NAR, 2019, VDJDB

abysis, Swindells, JMB, 
2017

Raybould, Bioinformatics, 
2020

Tickotsky, Bioinformatics, 2017,
McPAS-TCR

Antigen-specific DBs
Corrie, Immune Rev 2018, iReceptor

Repertoire DBs

Christley, Front Imm 2018, VDJServer

Adaptive Biotech, immuneAccess, ImmuneCODE

Zhang, Bioinformatics 2020, PIRD

Kovaltsuk, JI 2018, OAS

Mahajan  Front Imm, 2018, IEDB



Using antigen-specific public immune receptor databases in AIRR analysis

Zvyagin, Immunogenetics, 2020



Where to ask experimental and computational AIRR-seq questions?🤔🤔

https://b-t.cr/

https://www.antibodysociety.org/airr-community/join-the-airr-community-slack-workspace/

https://www.youtube.com/airrcommunity

@airr_community

https://b-t.cr/


- The investigation of adaptive immune repertoires requires a high-
throughput sequencing approach 

- AIRR-seq can be performed both on the genomic and proteomic level

- AIRR-seq measures central principles of adaptive immunity and opens 
the door to new applications (e.g., monoclonal antibody discovery, 
immunodiagnostics)

- Many AIRR-seq datasets and antigen-specific receptor sequences are 
publicly available (e.g., VDJDB, McPAS-TCR, iReceptor, OAS, PIRD)

Summary: Introduction to AIRR-seq
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“…broader application of Ig-seq, especially in clinical settings, will 
require development of standardized experimental design 
framework that will enable the sharing and meta-analysis of 
sequencing data generated by different laboratories.”

Breden, Front Imm, 2017

Rubelt, Nat Immunol, 2017

Challenges in experimental immune repertoire data generation



Standardization efforts of the AIRR Community

http://docs.airr-community.org/en/latest/swtools/airr_swtools_standard.html

http://docs.airr-community.org/en/latest/swtools/airr_swtools_standard.html


Bellanti, JA (Ed). Immunology IV: Clinical Applications in Health and Disease. 
I Care Press, Bethesda, MD, 2012

B and T cell subsets are genetically and functionally diverse

Shi, Nature Immunol, 2015.

Boyd, Microbiol Spectrum, 2014.

Genomic DNA vs. mRNA for 
antibody/TCR library generation

Source of B and T cells should be carefully considered

• DNA allows easier 
correlation of 
clone and cell 
counts

• DNA does not 
allow IgH isotype 
analysis 

• For RNA-based 
amplication, 
antibody 
producing cells 
(PB, PC) may bias 
immune receptor 
datasets 



Any two sequences with the same CDR3 are presumed to be clonally related 
(originate from same B cell clonal lineage)

Hershberg, Phil Trans B, 2015.

Definition/computation of clonal (clonotype) family assignment

https://b-t.cr/t/list-of-b-cell-clonal-identification-software/22

Nouri, 2018,2020, Front Imm/Bioinformatics



Biological sampling: the cell population sampled must be an approximate 
representation of the cellular compartment being investigated to allow meaningful 
conclusions to be drawn from the data. 

Technological sampling: ensuring that the number of sequencing reads exceeds the 
molecular diversity, or at least, the clonal diversity of the underlying sample. 

Biological replicates: HTS (high-througput sequencing) of different samples of the same 
underlying cell population [e.g., partitioning of PBMC (peripheral blood mononuclear 
cells)]. Biological replicates are used to assess biological sampling.

Technical replicates: replicate sequencing of the same immune repertoire library. A 
strict definition would be the resequencing of the same library, whereas a more lenient 
definition would consider also molecular replicates (separate library preparation of the 
same genetic material) adequate provided that biological replicates have been performed 
to exclude biological undersampling. Technical replicates are used to assess 
technological sampling. 

Species accumulation and rarefaction analysis: species accumulation curves display 
the rate at which new clones are discovered with increasing number of sequencing reads. 
By contrast, rarefaction curves are used to estimate the number of clones at a particular 
level of sampling.

Greiff, Trends Immunol, 2015  

Sampling depth determines biological and technological coverage

Warren, Gen Res, 2011



Greiff, BMC Immunol, 2014

Greiff, Trends Immunol, 2015.  

Testing sample coverage by species accumulation curves (mouse)

High-diversity
scenario

Super high 
diversity

C



Briney, Nature, 2019

Testing sample coverage by species accumulation curves (human)

Technical 
replicate

Biological replicate



Shugay, Front Imm, 2013

Higher coverage leads to higher discovery of public clones
Overlap of individual TCR beta CDR3 
repertoires grows geometrically with the 
number of sequence pairs sampled. Plots 
indicate the number of shared sequences for 12 
unrelated donor pairs in relation to sample size 
at the level of 

(A) all amino acid sequences, 

(B) amino acid sequence only, excluding 
matches with identical nucleotide sequences, 
and 

(C) nucleotide sequences. Each of the 12 
colored lines represents the observed overlap 
between randomly drawn samples of 

unique CDR3 variants for a different pair of 
unrelated donors. To extrapolate the predicted 
level of overlap if the full individual TCR beta 
repertoires were to be sampled, we plotted 
fittings of averaged data with a power law (Y = 
aXb ) as dashed lines. 

(D) We plotted the degree to which unique 
clonotypes were shared among our nine donors, 
and found that the frequency with which TCR 
beta clonotypes occur in human repertoires is 
distributed according to a power law. 



Definition of a clone
1. CDR3 with exact (100% identity) a.a. sequence
2. Full-length VDJ with exact (100%) a.a. sequence

Greiff, BMC Immunol, 2014

Ensuring exp. data reliability by replicate sequencing I

Reliably detected clones:
clones that are present in all replicates

→Complete clonal
coverage does not
imply correct clonal
ranking. To achieve,
correct clonal ranking an
even higher sampling
depth is needed.



Ensuring exp. data reliability by replicate sequencing II

Bashford-Rogers, BMC Immunol, 2014

→ Accurate clonal 
ranking requires very 

high sequencing depth



Ensuring exp. data reliability: DNA vs RNA sequencing

RNA and DNA were extracted from each peripheral blood sample from 8 CLL patients, on which multiplex RT-PCR or PCR was 
performed respectively and sequenced by MiSeq (250 bp paired-end).
A) The percentage of DNA sequences found in each RNA sample. The correlation between the BCR frequency in RNA and functional DNA
repertoires (DNA sequences that were found also in the RNA repertoire) for the 8 CLL patients in
B) all IgHV gene usage frequencies and
C) the low frequency IgHV gene usage frequencies only (<2%). If unequal numbers of RNA molecules per cell significantly skewed the 
RNA BCR repertoires, then deviation from y = x correlation would be expected.

Bashford-Rogers, BMC Immunol, 2014



Measuring the replicability, reliability and sensitivity of different TCR methods

Barennes, NBT, 2020

→ Replicability: the 
ability of each method to 
reproduce the same 
repertoire from different 
sub-samples from the 
same individual)

→ Reliability: the extent 
to which different methods 
record the same results 
when applied to the same 
sample

→ Sensitivity: capability 
of a given method to 
capture low abundant 
clonotypes



Errors → Artificial Clonal 
diversity and somatic 
hypermutation 

Bias → Artificial clonal 
selection and expansion

Georgiou, Nature Biotech, 2014.

87 primers for mouse
24 primers for human

Clonal frequency 
Clonal diversity

CDR3

Interclonal diversity
Somatic hypermutation

Full-length VDJ

AIRR-seq errors may compromise immunological interpretation



Unique molecular identifiers (UMI) for error correction

Khan, Science Advances, 2016  



Clonal variants for spike-in clone: CRISTINAW

Uncorrected
24 clones

MAF-corrected
1 clone

100% clonal error correction across all 16 spike-ins

Intraclonal variants for spike-in clone: CRISTINAW

Uncorrected
178 intraclonal variants

MAF-corrected
3 intraclonal variants

98% intraclonal error correction across all 16 spike-ins

AIRR-seq error correction using UMI (mouse and human)

Khan, Science Advances, 2016  

Friedensohn, Front Imm, 2018  

Validation of UMI error correction via spike-in design



Another benefit of UMIs: exclusion of sample contamination

5’

5’

5’

5’

overlapping clones
can be biological

overlapping clones
can also result from 

contamination

Mouse 1
NBC

Mouse 2
NBC

?

Unique tagging of each mRNA molecule in RT step with UMI

Overlapping clones with different tags must be biological

RT
NBC1

RT
NBC2

reads
NBC1

reads
NBC2

LHMA

CDHA
MKAV

CDLK

ADFI

RFET

PRST

DKLD

PCR library preparation and handling

HHID
WDMP
ADFG

RWDY
NBVS
KLMN
VSDF
KGBR

GAAD

Greiff, Cell Reports, 2017.

No contamination



Deakin, Nucleic Acids Res, 2014.

A library of 100 UMIs (barcodes) showed 7 false 
positives in top 100 

Overestimation of diversity due 
to errors in UMIs (PID)

Brodin, PLoS ONE, 2015.

→ Setting a UMI threshold (n≈>3–4) 
to eliminate erroneous UMI diversity

Egorov, J Immunol, 2015.

I) Issues in UMI use: errors in UMIs



II) Issues in UMI use: undersampling of UMIs

Vollmers, PNAS, 2013

→ Only reads with a UMI (UID) 
diversity of n>1 may be used for 
downstream statistical analyses

→ Expected CDR3 overlap: 14% (Figure 5 in 
Greiff/Menzel et al. , Cell Reports, 2017).

Greiff, Cell Reports, 2017

→ High-diversity repertoires (>500,000 unique clones) 
such as naïve B cells may not be sufficiently covered 
using UMI technology

Barennes, NBT, 2020



Greiff, Trends Immunol, 2015

High-throughput annotation of AIRR-seq data

https://b-t.cr/t/list-of-v-d-j-
annotation-software/18

Annotation of D-region is unreliable

Bolotin, Nat Met, 2015



Genetic source of repertoire differences: germline gene loci

Watson, Trend Imm, 2017
Collins, Curr Op Sys Bio, 2020

Implication in disease

Allele databases Experimental and computation allele/haplotype detection
•Germline gene alleles might differ by ethnicity.

•Ideally, germline gene reference databases for antibody sequence  
annotation should be compiled for each individual (Corcoran, Nat 
Comm, 2015, Gadala-Maria, PNAS, 2015, Ralph, PLoSCompBio, 
2019, Peres 2019 Bioinformatics, Gidoni 2019 Nat Comms, Omer 
2020 Bioinformatics, Rodriguez, Frontiers in Imm 2020)



- Biologically conclusive AIRR-seq depends on deep coverage of immune repertoires. 
Coverage may be assessed via replicates and species accumulation curves

- AIRR-seq library preparation can introduce numerous errors: primer bias, PCR bias

- Error correction can be performed both experimentally (e.g., UMI, replicates) and 
computationally (e.g., clonotype clustering, exclusion of singleton reads)

- UMI-based error correction may not not applicable for highly diverse sample

- Numerous AIRR-seq sequence annotation tools exist. However, care should be taken when 
choosing the reference genome in order to avoid introducing artificial diversity or mutations

- Identification of germline gene alleles enables more accurate germline gene annotation and 
SHM quantification | potential link between germline genes and antibody-antigen 
binding/disease

Summary: Error correction and annotation of AIRR-seq data
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Georgiou, Nature Biotech, 2014.

Issues in bulk AIRR-sequencing

VH⚡VL

TCRα⚡TCRβ



Robinson, Nat Rev Rheu, 2014

Benefits of single-cell sequencing: gene expr. info and error corr.

Benefit 1:
Simultaneously
measure TCR, B
cell Ig, and gene
expression in the
same sample

Benefit 3:
Reduce error by
cell barcoding

Benefit 4:
Obtain correct
clonal frequency
ranking

Benefit 2:
preserve IgH–
IGL, TCRa–TCRb
pairing

Stubbington, Science, 2017



A Rosetta Stone for immunology is needed 
to map immune receptors to antigen recognition 

https://www.vaksinebloggen.no/vaccine-research-in-need-of-a-rosetta-stone/

https://www.vaksinebloggen.no/vaccine-research-in-need-of-a-rosetta-stone/


42

Novel technologies for linking immune receptor sequence to function



43

Open software for analysing AIRR single-cell data



44

Caveats single-cell analysis

- Reduced throughput as compared to bulk seq 

- Benchmarking of technology still in its infancy (keep in mind that even bulk-
sequencing is still not fully standardized and mostly incomparable across 
sequencing protocols and technologies)

- Data analysis pipelines (downstream of data processing) are mostly 
developed for bulk-sequencing and cannot be readily transferred to single-
cell seq  (how to treat paired information in data analysis remains unclear)



- Bulk and single-cell (b/sc)AIRR-seq allow asking different research questions

- bAIRR-seq remains the state-of-the-art in case deep coverage of immune repertoire 
diversity is the main research focus

- scAIRR-seq preserves pairing information and is therefore superior if exact clonal/pairing 
information is needed such as for: phylogenetics, and antibody/TCR engineering

- scAIRRseq allows stricter error correction and coupling of transcriptome and repertoire 
analysis

- Recently several scAIRR-seq approaches and (commercial) platforms have emerged. 
However, given their relative niche presence,  they have not been sufficiently compared 
and validated by a wider community (e.g., spike-in controls)

Summary: Single-cell AIRR-seq
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Miho, Front Imm, 2018

Computational strategies for dissecting the high-
dimensional complexity of adaptive immune repertoires

→Given the similarity of 
antibody and T cell receptor 
genomic structure, most 
computational analyses 
can be applied 
interchangeably

→ For an in depth overview 
of current computational 
strategies and future 
directions for immune 
repertoire analysis, please 
refer to 
• Rosati, BMCBiotech, 2017
• Miho, Front Imm, 2018
• López-Santibáñez-Jácome, 

PeerJ, 2018
• Brown, MSDE, 2019
• Bradley, AnnRevImm, 2019
• Lees, Curr Op in 

SysBio2020



Exemplary list of comp. tools for immune repertoire analysis

→ Phylogenetic methods are 
being used exclusively for 
antibody data since SHM is 
absent from T cells.

Most tools are written in python 
and R (with C/Java being used to 
improve performance of certain 
subroutines)

→ While igraph and networkx are 
predominantly used for 
quantification of network 
measures, cytoscape and 
gephi’s main purpose is to 
visualize networks

→ Diversity tools can be 
subdivided into 3 groups:  (i) 
inference of germline gene 
diversity, (ii) inference of VDJ 
recombination statistics, (iii) 
quantification of clonal diversity 

→ Repertoire convergence 
(overlap) can be quantified  (i) 
using overlap, (ii) distance and 
(iii) machine learning methods

Miho, Front Imm, 2018

→ For an in depth overview of current 
computational strategies and future 
directions for immune repertoire analysis, 
please refer to 
• Rosati, BMCBiotech, 2017
• Miho, Front Imm, 2018
• López-Santibáñez-Jácome, PeerJ, 2018
• Brown, MSDE, 2019
• Bradley, AnnRevImm, 2019
• Lees, Curr Op in SysBio2020



Repertoire 1 Repertoire 2

Quantifying and comparing the diversity of immune repertoires

How are immune receptors distributed within a repertoire?
-uniform or uneven?

How does one compare those distributions across repertoires?



Quantifying repertoire diversity using diversity indices I

Antibody sequence Antibody frequency [%]

CARTRGDYW 3.0

CARARHAYDYW 1.3

CARNYYGLADYW 0.9

CARGFADSDYW 0.7

… …Antibody (clonal) frequency distribution:

Antibody sequence Antibody frequency [%]

CARGHJADYW 10

CARYARHADY 4.3

CARGLANYYDY 2.7

CARDSGFADY 0.6

… …Antibody frequency distribution:
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Repertoires are not 
comparable

based on frequency 
distributions because 
Ab sequences do not 

overlap

Diversity indices
solve this problem by 
mapping frequency 

distributions to a 
common coordinate 

system 



Quantifying repertoire diversity using diversity indices II

Rényi entropy (new coordinate 
system)

Antibody frequency distribution:

The higher alpha, the higher is 
the weight of abundant 

sequences

log (Species richness) :=  
number of unique immune 

receptors

α = 0

α = 1

α = 2

α → ∞

Shannon entropy

log(Simpson’s index)

log(Berger-Parker
index)



Challenges in repertoire diversity analysis |

Repertoire 1 (33,29,28,5,5)% 
Repertoire 2 (42,30,10,8,5,5)% 

Frequency 
distributions

Rep 2 more
diverse than Rep 1

Rep 1 more
diverse than Rep 2

Challenge 2:

Single diversity indices are
insufficient to capture the
sequence frequency space
(qualitatively different results
for different indices)

Challenge 1:

Rényi entropy is difficult to
interpret biologically

Diversity profile



Challenge 1: Biological interpretation of diversity

Hill-diversity (also termed: True 
diversity, effective number of species)

Example: Repertoire X is composed of 5 
antibody sequences with a given frequency 

distribution (75,15,5,4,1)  
α = 1D(Repertoire X) = 2.28

Interpretation: The diversity of repertoire X 
is equivalent to a repertoire composed of 

≈2 clones with equal frequency (50,50) 



Challenge 2: capturing the entire frequency space using 
diversity profiles I

Zipf’s law
(power law distribution)

Greiff, Genome Medicine, 2015



Diversity estimations

Arnaoult, Nat Comm, 2016

Individual repertoire estimation from 
sample 

Laydon, Proc T. Soc B, 2015
(Dis)Advantages of diversity estimators

Species accumulation curve to estimate population diversity

Greiff, Cell Reports, 2017



Quantifying sequence convergence based on entire sequences



c IGoR’s pipeline includes three modes. In the 
learning mode, IGoR learns recombination statistics 
from data sequences. In the analysis mode, IGoR 
outputs detailed recombination scenario statistics for 
each sequence. In the generation mode, IGoR 
produces synthetic sequences with specified 
recombination statistics. 

Marcou, Nat Comm 2018

a IGoR lists putative recombination 
scenarios consistent with the observed 
sequence, and weighs them according to 
their likelihood. 

b The likelihood of each scenario is 
computed using a Bayesian network of 
dependencies between the recombination 
features (V, D, J segment choices, insertions and 
deletions), as illustrated here for the human TRB 
locus. 

bitbucket.org/qmarcou/igor

→ Distinguish between 
convergent 
recombination and 
convergent selection
→ Distinguish between 
public clones due to 
recombination and those 
due to antigen-driven 
selection
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Further literature:
Mora, PNAS, 2010
Murugan, PNAS,, 2012
Elhanati, Phil Trans R Soc B,  2015
Elhanati, Bioinformatics, 2016 
Sethna, PNAS, 2017

Inferring the recombination statistics of immune repertoires



Predicting TCR public clone occurrence by modeling VDJ recombination

Elhanati, ImmuneRev, 2018

mouse human

undersampling

Number of public sequences per repertoire

PUBLIC classifier

Open questions:
- influence of individual-specific models?
- influence of technology on models?



Prediction of TCR binding from the sequence by exploiting convergence

Reddy, Nature, 2017  (News and Views)Dash, Nature, 2017
Glanville, Nature, 2017

Distance-based 
classifier (TCRdist) 
that assigns 
previously 
unobserved TCRs 
to characterize 
repertoires with 
robust sensitivity 
and specificity. 

Dash, Nature, 2017

Epitope-specific TCR 
repertoires of CD8+ T cells 
from mice and humans, 
representing over 4,600 in-
frame single-cell-derived 
TCRαβ sequence pairs 
from 110 subjects 

Glanville, Nature, 2017

GLIPH (grouping of 
lymphocyte interactions by 
paratope hotspots) to 
cluster TCRs with a high 
probability of sharing 
specificity owing to both 
conserved motifs and 
global similarity of 
complementarity-
determining region 3 
(CDR3) sequences. 

HC–tetramer-sorted 
antigen-specific TCR 
repertoires of EBV, 
influenza, CMV as well as 
public sources (n = 2,068). 

Huang, NBT, 2020



- Diversity is one of the hallmark features of adaptive immune repertoires. Therefore, 
its measurement lays the foundation for the majority of repertoire statistics

- Diversity can be quantified using methods borrowed from mathematical ecology

- Diversity profiles are superior to single diversity indices when comparing clonal 
frequency distribution across samples

- Diversity holds immune information (the extent of which remains unclear)

- VDJ recombination statistics can be inferred using Bayesian statistics

- Repertoire convergence (overlap) may be quantified from several perspectives and 
may be leveraged for the prediction of antigen specificity

Summary: Measuring immune repertoire diversity



Networks for the analysis of antibody repertoire architecture
(sequence similarity among sequences within a repertoire)

Immune repertoire

D
iv

er
si

ty

Antibodies 

CARDNKDYW

CARANKDYW

CARAGKDYW

CARANADYW

Diversity analysis provides
no information on sequence 

similarity

Together, diversity and network analysis 
resolve the frequency and similarity information 

of immune repertoires

Network analysis
resolves the similarity 

relation (architecture) of 
antigen receptor sequences

CARANKDYW

CARDNKDYW

CARANADYW

CARAGKDYW

Arora, bioRxiv, 2019



Building networks from immune repertoire sequence data



Quantitative analysis of immune repertoire networks
Cumulative (log-log)

(k)
(k)

Hub

CDR3 degree (nr. of links)
distribution

(%
)

Figure modified from Enkelejda Miho

Power-law

Exponential
Poisson (random)

Power-law Exponential Poisson (random)

≈Antigen-experienced
repertoire

≈Naïve 
repertoire

The degree distribution 
quantifies the structure of 

the network



Madi et al., Gen Res, 2017

Further literature:
Pogorelyy et al., 2017, PNAS, 2018
Madi et al., 2017, Gen Res, 2017
Chang et al., Sci Rep, 2016
Linder et al., Nat Immunol, 2015
Hoehn et al., Philos Trans R Soc B, 2015
Bashford-Rogers et al., Genome Res, 2013

Insights into AIRR biology afforded by network analsis I



Miho, Nat Comm, 2019

→ Network measures are 
reproducible across mice 

→ Antibody networks are 
robust to random 
removal of clonal
(also T cell networks, Madi, 
elife, 2017)

→ Network structure 
is redundant across 
similarity layers

Insights into AIRR biology afforded by network analsis II



Insights into AIRR biology afforded by network analysis III

Pogorelyy, PLOS Biology, 2019



- Network architecture determines antigen recognition breadth 

- Quantitative and not visual analysis of antibody networks allows insight 
into the construction principles of antibody repertoires

- Construction of large-scale networks (>105 clonal sequences) requires 
high-performance computing 

- Public clones play a special (but yet undetermined) structural role in 
antibody and T cell networks

Summary: Measuring immune repertoire architecture



Phylogenetics: retracing antibody evolution

Gruell & Klein, Nat Med, 2014

Application of phylogenetics in antibody repertoire 
research 
- Goal: infer evolutionary relationship between antibody 
sequences and visualize diversification of B-cell 
lineages in response to antigen

- Detect selection on B cell lineages
- Detect and quantify dynamics of affinity maturation
- Reconstruct evolution of broadly neutralizing antibodies

Hoehn, MBE, 2016

Clade: common 
ancestor + descendants 

representing a single "branch" on 
a tree

Lineage: separate V-D-J 
recombination events (can be 

computationally preselected for 
by restricting data to sequences 
sharing V, J, and CDR3 length)

Root: position of 
hypothetical ancestor

Evolutionary time



Most common methods used for phylogenetic inference

→Phylogenetic approaches 
may lead to different tree 

topologies

→ BEAST can be used 
to infer the duration of 

evolution and SHM rate
Yermanos , Bioinformatics, 2017

DeWitt, Mol Bio and Evo, 2018

Using genotype abundance to improve phylogenetic inference

c Intuitively, the abundance information 
indicates that the tree on the left is 
preferable because the more abundant 
parent is more likely to have generated 
mutant descendants. 



Recent advances in AIRR phylogenetic analysis: 
tree significance and incorporation of antibody affinity

• A method that uses evolutionary information from the family of 
related sequences that share a naive ancestor to predict the 
affinity of each resulting antibody for its antigen. When 
combined with information on the identity of the antigen, this 
method should provide a source of effective new antibodies. 

• A method for a related task: given an antibody of interest and 
its inferred ancestral lineage, which branches in the tree are 
likely to harbor key affinity-increasing mutations

PLOS Comp Biol 2020

https://bitbucket.org/kleinstein/dowser

• Statistical method for characterizing migration, differentiation, and isotype  
switching along B cell phylogenetic trees.



Summary: Retracing antibody evolution (phylogenetics)

- Antibody evolution is a hallmark feature of the antigen-driven adaptive immune 
response: its faithful reconstruction may lead to profound insight into the 
mechanisms of selection that govern the formation of antigen-specific repertoires

- Many methods exist for phylogenetic inference: they do not only differ in 
assumption and speed but may also differ in the resulting lineage trees 

- Recently, progress has been made in coupling antibody abundance with antibody 
sequence information in order to more accurately reflect antibody evolution 

- Mutability maps may help in increasing the accuracy of phylogenetic models

- Comparison of tree topologies remains a crucial challenge 



Input data are often high-dimensional, 
which is challenging for many classical 

machine learning algorithms. Alternatively, 
higher-level features extracted using a 

deep model may be able to better 
discriminate between classes.

Supervised machine learning
methods relate input features x to
an output class label y, whereas
unsupervised methods learn
factors about x without assigned
class labels.

Deep networks use a 
hierarchical structure to learn 
increasingly abstract feature 

representations from the 
raw data.

Angermueller, Mol Sys Biol, 2016

Machine learning: a general overview



Machine learning enables the deciphering and prediction of immune receptors

Greiff, Cowell, Yaari
Curr Op Sys Bio, 2020



Specific biological and machine learning challenges for immune receptor research 

Greiff, Cowell, Yaari
Curr Op Sys Bio, 2020



   
Machine learning approaches applied to adaptive immune receptor data 

Ground truth sequence data generation 

Marcou et al., Nat Comms, 2018
Olson et al., Front Imm, 2019
Weber, et al., Bioinformatics, 2020
…

Prediction of antigen binding or 
public clones

Dash et al., Nature, 2017
Glanville et al., Nature, 2017
Greiff et al., JI, 2017
Elhanati et al., ImmRev, 2018
Fischer et al., Mol Sys Bio, 2020
Moris et al., Brief in Bioinf, 2020
Huang et al. ; NBT, 2020
Akbar et al., Cell Reports, 2021
Sidhom et al., Nat Comms, 2021

…

Generative modeling
Davidsen et al., elife, 2019
Amimeur et al., bioRxiv, 2020
Friedensohn et al., bioRxiv, 2020
…

Prediction of immune state
Emerson et al., Nat Gen, 2017
Ostmeyer et al., Cancer Res, 2019
Widrich et al., NeurIPS, 2020
Beshnova et al., Sci Trans Med, 2020
Sidhom et al., Nat Comms, 2021
Shemesh et al., Front Imm, 2021
…



Macro: biases your metric toward the least populated classes.

Micro: bias your metric towards the most populated classes.

If macro << micro: 
smaller classes are poorly classified, whereas larger ones are likely correctly classified.

If macro >> micro:
gross misclassification in the most populated classes, whereas smaller classes are likely correctly 

classified. 
Sokolova, Information Processing & Management, 2009

Multi-class accuracy assessment



- TCR clusters over the full cohort are 
largely driven by the occurrence 
patterns of specific HLA alleles 

- HLA-restricted clusters may reflect 
shared immune exposures, as 
illustrated here by a CMV-associated 
TCR cluster (the pink cluster in the 
bottom panels)

Effects of MHC, age, and sex on AIRR
Dewitt, 2018, elife

"Next-generation TCR variable beta chain (TCRBV) immunosequencing of 824 individuals was 
evaluated in a multiparametric analysis including HLA-A -B/MHC class I background, TCRBV 
usage, sex, age, ethnicity, and TCRBV selection/expansion dynamics. We found that HLA-

associated shaping of TCRBV usage differed between the sexes.”



Generating immune repertoires with native-like immunosignature complexity for 
benchmarking machine learning approaches

Cédric 
Weber

Weber, Bioinformatics, 
2020

Wout 
van 

Helvoirt



Development of a platform for AIRR machine learning 

Pavlović and Scheffer,  et al., bioRxiv, 2021

https://immuneml.uio.no

doi: https://doi.org/10.1101/2021.03.08.433891

Current AIRR ML technical challenges:
• Without source code available, ML 

methodologies remain challenging to 
reproduce

• Currently researchers are developing 
their methodology from scratch: the 
code should be reusable

• The code should be flexible: it should 
be possible to study different data 
and different diseases, using the 
same or different models

• The structure of immune receptor 
data should be exploited for ML

https://immuneml.uio.no


• Label shuffling 
• tests appropriateness of your class definition 
• Shuffle class labels x-times →prediction accuracy should decrease  converging towards 

theoretical limit
• Randomize sequences 

• tests how much information is in sequence and sequence nt/aa composition
• shuffle nt/aa order in sequences → prediction accuracy should decrease converging 

towards theoretical limit if sequence composition is similar between classes
• Equilibrate sequence length between classes

• tests to what extent sequence length contributes to prediction accuracy
• Further controls: test effect of undersampling (real world robustness of classifier), evaluate 

feature recovery to inspect immunological meaning of classifier, hyperparameter 
optimization (for DL, random search might be more efficient than grid search), large 
enough test data sets, benchmark ML approach on simulated data where ground truth 
exists, balance by age, HLA, sex if possible

Necessary and interesting controls in (AIRR) machine 
learning



- Machine learning (ML) is useful for classifying, predicting (diagnostics, repertoire-level) and generating 
immune repertoires (therapeutics, sequence-level)

- ML can act on entire immune receptor sequence or on subsequences (k-mers) thereof

- ML provides information on the extent to which immune repertoires capture immune information 

- Measuring accuracy of ML remains a challenge, as is standardisation, reproducibility and 
generalizability 

- Deep learning enables the capture of higher dimensional repertoire features. Its immunological 
interpretation, however, remains a challenge

- High-quality training and test/validation data for machine learning remains scarce. It remains also a 
question what are good training and test datasets

- Adjust for confounders and covariates 

Summary: Classification, prediction and generation of AIRR data

Brown et al., MSDE, 2019
Greiff et al., Curr Op in SysBio 2020  



Future directions and Outstanding questions

Wardemann, Trends Imm, 2017

Cobey, Philo Trans B, 2015

Watson, Trends Imm, 2017

Greiff, Trends Imm, 2015

Personal view: outstanding questions
- Standardization of experimental protocols
- Methods for large-scale generation of antigen-annotated 

AIRR data
- Merging sequence analysis with structural modelling at 

repertoire scale
- Improve proteomic understanding of the antibody 

repertoire 
- Methods for analysing paired chain data
- Interpretability of machine learning approaches
- Structure of antigen-specific motifs implicated in the 

prediction of  antigen binding and immune status
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