Snake venom variation and its impact on the efficacy of polyclonal antibody therapy

Nicholas Casewell

Image: Simon Townsley
Global burden of snakebite

Global numbers
1.8–2.7 million envenomings
81,000–138,000 deaths

The United States and Canada
3,800–6,500 envenomings
7–15 deaths

Europe
8,000–9,900 envenomings
30–128 deaths

Asia
1.2–2.0 million envenomings
57,000–100,000 deaths

Latin America and the Caribbean
137,000–150,000 envenomings
3,400–5,000 deaths

Africa and the Middle East
435,000–580,000 envenomings
20,000–32,000 deaths

Oceania
3,000–5,900 envenomings
200–520 deaths

venom gland accessory gland fangs
Medically important (front fanged) snakes

Elapids

Vipers
Snake venoms

- Mixtures of proteins and peptides
- Venoms vary in composition
 - Inter-specifically
 - Intra-specifically
- Primarily used for prey capture
 - Composition linked to diet
- BUT, also used for defence
 - >100,000 human deaths/year
 - (and some can spit venom defensively too!)
Snake venom variation

Toxin composition dictates pathology

Elapid snakes

Ptosis

Respiratory failure

Toxin composition dictates pathology

(A) cardiovascular effects
1. Activation of kininogens - snake venom serine proteases
2. ACE inhibitors - bradykinin potentiating peptides
3. Hydrolysis of capillary wall basement membranes - snake venom metalloproteinases

(B) haemostatic effects
1. Activation of factor V - snake venom serine proteases
2. Inhibition of factor X - C-type lectins
3. Activation of factor X - snake venom metalloproteinases - snake venom serine proteases
4. Activation of prothrombin - snake venom metalloproteinases - factor Va toxin - factor Xa toxin
5. Inhibition of thrombin - C-type lectins - kunitz-type serine protease inhibitors
7. Activation of plasminogen - snake venom serine proteases
8. Inhibition of plasmin - kunitz-type serine protease inhibitors
9. Inhibition or aggregation of platelets - phospholipases A2 - snake venom metalloproteinases - disintegrins - snake venom serine proteases - C-type lectins

Viperid snakes

Intra-cranial haemorrhage

Non-clotting blood (VICC)

Slagboom et al. 2017. *British Journal Haematology*
Venom variation impacts on antivenom efficacy

1) Extract venom

Venom variation → low paraspecific efficacy against different biting species

2) Immunise

The more venoms used in manufacture:

• the more distinct IgGs
• the less IgG to each venom
• the more vials required for cure
• the greater the potential for adverse effects
• the greater the cost

3) Extract blood

4) Purify antibodies

5) Formulate
Many antivenom manufacturers globally

Europe
Manufacturers in:
- France
- Poland
- UK
- Russia
- Croatia

Middle East/N Africa
Manufacturers in:
- Iran
- Saudi Arabia
- Israel
- Egypt
- Tunisia
- Algeria

Asia
Manufacturers in:
- Thailand
- Japan
- China
- Indonesia
- Phillipines
- Korea
- Myanmar
- Pakistan

India
Five manufacturers

N America
Manufacturers in:
- USA
- Mexico

C America
Manufacturers in:
- Costa Rica

S America
Manufacturers in:
- Brazil
- Colombia
- Argentina
- Peru
- Venezuela
- Uruguay
- Ecuador

Australasia
Manufacturer in:
- Australia

Sub-Saharan Africa
Manufacturer in:
- South Africa

http://apps.who.int/bloodproducts/snakeantivenoms/database/
The result is a fragmented and vulnerable market
The real-world consequences can be disastrous

• Fake products
• Dilute products
• Geographically inappropriate products

= disastrous outcomes for snakebite patients

CAF: ↑ from 0.4% to 10.0%
Ghana: ↑ from 1.8% to 12.1%

Alirol et al. 2015. *PLOS NTD*
How do we know which products are effective?

- Weak regulatory frameworks
- Limited robust clinical trials
 - Difficult to perform for multiple biting species
 - Outcome measures highly variable
How do we know which products are effective?

- Weak regulatory frameworks
- Limited robust clinical trials
- Antivenom efficacy reliant on preclinical testing
 - Models are limited
 - Testing restrictive

Ainsworth et al. 2020. PLOS NTD
Antivenom efficacy is unpredictable

- SAIMR polyspecific ‘gold standard’

 - (South African Vaccine Producers)

- FavAfrique

 - (Sanofi Pasteur)

- Snake Venom Antiserum (African)

 - (VINS Bioproducts Ltd)

- Polyvalent Snake Venom Antiserum (PAN AFRICA)

 - (Premium Serums and Vaccines Ltd)

- Inoserp PANAFRICAIN

 - (Inosan Biopharma)

- SAIMR *Echis* monospecific

 - (South African Vaccine Producers)
Dose efficacy is unpredictable

saw-scaled viper

SAIMR
Echis or
Premium

FavAfrique
or Premium

cobras

puff adder

SAIMR
_poly or
Premium

FavAfrique
or Premium

black mamba

SAIMR poly

SAIMR poly

Harrison et al. 2017. _PLOS NTD_
Antibody content likely plays a major role

<table>
<thead>
<tr>
<th>Antivenom</th>
<th>US $/vial</th>
<th>Antibody (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium - PAN AFRICA poly</td>
<td>$ 84</td>
<td>63.3</td>
</tr>
<tr>
<td>VINS – African</td>
<td>$ 48</td>
<td>21.7</td>
</tr>
<tr>
<td>Inosan – Inoserp PANAFRICAIN</td>
<td>$ 105</td>
<td>31.7</td>
</tr>
<tr>
<td>Sanofi – FavAfrique</td>
<td>$ 79-99</td>
<td>96.7</td>
</tr>
<tr>
<td>SAVP - SAIMR polyvalent</td>
<td>$ 315</td>
<td>111.7</td>
</tr>
<tr>
<td>SAVP - SAIMR Echis</td>
<td>$ 315</td>
<td>71.7</td>
</tr>
</tbody>
</table>

Harrison et al. 2017. *PLOS NTD*

Ainsworth et al. 2020. *PLOS NTD*
But immunogen composition influences dose efficacy

- Elapid venoms have a higher proportion of low molecular weight toxins
- These are poorly immunogenic compared with larger viper enzymes
- Results in polyvalent antivenoms having weaker dose efficacy against elapid venoms

Ainsworth et al. 2020. *PLOS NTD*
How many venom immunogens do we need?

- Generic anti-haemotoxic polyvalent antivenom
- Used two different immunising mixtures – 7 and 12 venoms
- Immunised sheep, compared responses *in vitro* and venom neutralisation *in vivo*

<table>
<thead>
<tr>
<th>Immunogen mixture I (resulting in EAV 1)</th>
<th>Species</th>
<th>Sub-family</th>
<th>Geographical region</th>
<th>Venom origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bothrops asper</td>
<td>Crotalinae</td>
<td>Central America</td>
<td>Costa Rica</td>
<td></td>
</tr>
<tr>
<td>Bothrops jararaca</td>
<td>Crotalinae</td>
<td>South America</td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>Echis ocellatus</td>
<td>Viperinae</td>
<td>West Africa</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>Calloselasma rhodostoma</td>
<td>Crotalinae</td>
<td>Southeast Asia</td>
<td>Captive bred</td>
<td></td>
</tr>
<tr>
<td>Dispholidus typus</td>
<td>Colubrinae</td>
<td>sub-Saharan Africa</td>
<td>South Africa*</td>
<td></td>
</tr>
<tr>
<td>Deinogkistrodon acutus</td>
<td>Crotalinae</td>
<td>East Asia</td>
<td>Captive bred</td>
<td></td>
</tr>
<tr>
<td>Daboia russellii</td>
<td>Viperinae</td>
<td>South Asia</td>
<td>Sri Lanka</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immunogen mixture II (resulting in EAV 2)</th>
<th>The same 7 venoms in immunogen mixture I plus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitis arietans</td>
<td>Viperinae</td>
</tr>
<tr>
<td>Echis carinatus</td>
<td>Viperinae</td>
</tr>
<tr>
<td>Rhabdophis subminiatus</td>
<td>Natricinae</td>
</tr>
<tr>
<td>Trimeresurus albolabris</td>
<td>Crotalinae</td>
</tr>
<tr>
<td>Crotalus atrox</td>
<td>Crotalinae</td>
</tr>
</tbody>
</table>

Alomran et al. 2021. *PLOS NTD*
Different immunogen diversity = comparable *in vitro* binding

Alomran et al. 2021. *PLOS NTD*
Fewer immunogens = superior dose efficacy and breadth

Alomran et al. 2021. *PLOS NTD*
But insufficient immunogen breadth can lead to inefficacy

- In India there are ~58,000 snakebite deaths annually
- ‘big four biting species’
 - *Naja naja* (cobra)
 - *Bungarus caeruleus* (krait)
 - *Echis carinatus* (carpet viper)
 - *Daboia russelii* (Russell’s viper)
- All antivenoms made using these four venoms, sourced from SE India, as immunogens

Laxme et al. 2019. *PLOS NTD*
Inter-specific venom variation undermines efficacy

Neutralising potency

- **B. fasciatus (WB)**
- **B. sindanus (RJ)**
- **B. caeruleus (PB)**
- **E. c. sochureki (RJ)**
- **E. carinatus (MH)**
- **N. kaouthia (AR)**
- **N. kaouthia (WB)**
- **N. naja (MH)**

Laxme et al. 2019. *PLOS NTD*
Intra-specific venom variation undermines efficacy

Laxme et al. 2021. *PLOS NTD*
Laxme et al. 2021.
PLOS NTD
Challenges posed by venom variation

• Inter- and intra-species venom variation can dramatically reduce the efficacy of antivenom

• Convergent evolution of similar venom profiles can result in unexpected efficacy against unrelated snake species

• But predicting the efficacy of existing treatments is challenging, and even more so without knowledge of venom composition

• Robust testing is therefore required to ensure appropriate antivenom efficacy across desired geographical indication
New approaches are needed to improve/enhance antivenoms

- Toxin specific antibodies (mAbs, nanobodies, etc)
- DNA aptamers
- ADDomer virus like particle toxin binding molecules
- Receptor mimicking peptides/proteins
- Small molecule toxin inhibitors ("drugs")

Multiple formats likely required to tackle the diversity of toxins found across geographically distinct venoms

Casewell et al. 2020 Trends Pharmacological Sciences
With thanks to...

Instituto de Biomedicina de Valencia
Juan Calvete

IPR, Nairobi
George Omondi Ouloch

Indian Institute of Science, Bangalore
Senji Laxme
Kartik Sunagar

VU Amsterdam
Jeroen Kool

CSRI at LSTM
Nessrin Alomran
Michael Abouyannis
Stefanie Menzies
Laura Albuiescu
Stuart Ainsworth
Robert Harrison

Foreign, Commonwealth & Development Office
UKaid from the British people
MRC Medical Research Council
The Royal Society