Antibody Engineering & Therapeutics Europe

11-13 June, 2019
Postillion Hotel Amsterdam, Amsterdam, The Netherlands

BRINGING YOU THE LATEST SCIENCE, TECHNOLOGIES AND PARTNERS NEEDED TO ACCELERATE NEXT GENERATION ANTIBODIES TOWARDS COMMERCIAL SUCCESS

Keynote Luminaries to Inspire Your R&D Efforts

Lgr5 Stem Cell Based Organoids and Their Applications in Cancer Research

Hans Clevers, M.D., Ph.D.
Professor of Molecular Genetics,
Hubrecht Institute, The Netherlands

Antibody Therapeutic Developments, Pipeline and Progress at MedImmune

Jane Osbourn, Ph.D.
Vice President, Research and Development and Site Leader,
MedImmune, United Kingdom

Mining the Immune Repertoire of Mice with Fully Human Immunoglobulin Loci for Therapeutic Human Antibodies

Allan Bradley, Ph.D.
Chief Scientific Officer,
Kymab Limited, United Kingdom

Bispecific Antibodies and Beyond: The Magic Bullet Revisited

Ton Logtenberg, Ph.D.
President and CEO,
Merus N.V, The Netherlands

Produced by the Organizers of the Antibody Engineering & Therapeutics San Diego Event

Register Online by 24 May and Save Up to £100
AntibodyEngEU.com
Accelerate your pipeline of antibody and protein therapeutics to market by applying best practices and lessons learned from case studies and new data presentations from global industry leaders working across the entire spectrum of antibody discovery and development.

Bring your product to market by meeting leading product and service providers showcasing exciting antibody technologies in our poster and exhibit hall.

Connect with industry and academic scientists and executives from Europe and around the world focused on antibody and protein therapeutic discovery and development during luncheons, cocktail receptions and networking breaks. Networking has never been easier with the included conference app that allows you to view the attendee list and schedule meetings before, during and after the event.
Morning Half-Day Workshop • 08:40-12:15

Workshop A: Bispecific Antibodies: New Strategies and Case Studies

08:40 Workshop Moderator’s Remarks
Aran Labrijn, Ph.D., Principal Scientist, Antibody Research and Technology, Genmab, The Netherlands

08:45 Bispecific Antibodies: History and (Future) Promises
Since the concept of a man-made bispecific antibody was originally described (almost 60 years ago), many technical and conceptual advances have led to the extensive bispecific antibody landscape known today. A short historical perspective will be given, including discussion of the different bispecific antibody classes, the unique opportunities for dual-targeting and the (current) challenges facing the (pre-) clinical development of bispecific antibodies.
Aran Labrijn, Ph.D., Principal Scientist, Antibody Research and Technology, Genmab, The Netherlands

09:15 Bispecific Target Discovery by High Throughput Functional Screening of Hundreds of Combinations of Different Target Pairs
To exploit the true potential to access novel biology with bispecific antibodies we have developed technology to facilitate unbiased target pair identification and validation through grid screening in functional human cell assays large numbers of bispecific antibodies. Combination of our antibody discovery capabilities, a novel bispecific screening format and high throughput flow cytometry or imaging enables us to screen thousands of bispecific antibodies to hundreds of antigen combinations and identify new target pairs for a defined patient phenotype. The technology and a specific example application from patient phenotyping to new target pair discovery will be described.
Laura Starkie, Ph.D., Principal Scientist, Bispecific Target Discovery, UCB, United Kingdom

09:45 The Use of Unbiased Screens to Identify Bispecific Antibodies with a Unique Mode of Action
Target-based drug discovery based on disease modelling and pathway analysis mainly focuses on a design approach for bispecific antibodies. Our strategy uses an unbiased approach with a functional readout that allows the discovery of bispecific antibodies with unique features and biology. The process of functional screening to lead bispecific antibody of several of our clinical candidates will be described in this presentation.
Cecile Geuijen, Ph.D., Vice President, Oncology, Merus, The Netherlands

10:15 Networking Refreshment Break

10:45 The Immunology Underlying CD3-bispecific Antibody Treatment
Immunotherapy of cancer with CD3-targeting bispecific antibodies (CD3 bsAb) is a very promising strategy, also for solid malignancies. Xenograft mouse models often fail to fully recapitulate the natural tumor microenvironment, and therefore we investigated the immunological consequences of CD3 bsAb therapy in fully immune-competent mouse tumor models.
Thorbald van Hall, Ph.D., Associate Professor, Medical Oncology, Leiden University Medical Center, The Netherlands

11:15 Dual Targeting Approach Using Complementary Hemi-Bodies
Antigens suitable for T cell redirecting strategies against cancer are scarce. Consequently, we developed an antibody derivative, which comes in two complementary halves and addresses antigen combinations instead of single molecules. Each half contains an antigen specific scFv fused to either the VL or VH domain of an anti-CD3 antibody. When these two hemibodies bind their respective antigens on a cancer cell, they reconstitute “on target” the original CD3-binding site associated with T lymphocytes.
Gernot Stuhler, M.D., Immunotherapy Lab, University Hospital Würzburg, Germany

11:45 J-chain Based Bispecifics: IgM CD20xCD3
Bruce Keyt, Ph.D., Chief Scientific Officer, IGM Biosciences, Inc., USA

12:15 Close of Workshop A

12:20 Luncheon Provided for Full-Day Workshop Attendees Only (Those registered for both workshop A and workshop B)

Afternoon Half-Day Workshop • 13:40-17:15

Workshop B: Antibody-drug Conjugates (ADCs): New Strategies and Case Studies

13:40 Workshop Moderator’s Remarks
Esther Breij, Ph.D., Director of Translational Research, Genmab, The Netherlands

13:45 Insights into Conjugation Processes Employed in the Development of Therapeutic ADCs
Conjugation strategies are of great importance in the successful design and development of effective ADCs. The impact of current conjugation technologies on ADC stability, therapeutic index and pharmacokinetics will be discussed. Additionally, challenges and advancements in techniques for chemical modification of antibodies will be explored.
Justyna Mysliwy, Ph.D., Bioconjugation Team Leader, Iksuda Therapeutics Ltd., United Kingdom

14:15 Challenges in Process Development of Antibody-drug Conjugates (ADCs)
Synthon’s ADC technology aims to create ADCs having an optimal therapeutic window, balancing the effect of potent cell-killing agents on tumor cells versus healthy cells. Case studies will be presented of various ADCs in development together with challenges which are observed during conjugation, purification and manufacturing.
Guy de Roo, Ph.D., Principle Scientist, Synthon Biopharmaceuticals BV, The Netherlands

14:45 The Pyrrolobenzodiazepine (PBD) Dimer Class of ADC Warhead
The rationally designed PBD dimers have emerged as an important class of ADC warhead which exert their activity through forming highly cytotoxic DNA interstrand cross-links in the DNA minor groove. This presentation will describe how an understanding of structure activity relationships has enabled this flexible platform to be tailored to individual requirements in novel ADCs.
John A. Hartley Ph.D., Professor of Cancer Studies, University College London and Director of Pre-clinical Development, Spirogen Ltd., United Kingdom

15:15 Networking Refreshment Break

15:45 Preclinical Development of Enapotamab Vedotin - Opportunities in Treatment Resistant Solid Cancers
The presentation will provide an overview of the preclinical anti-tumor activity of enapotamab vedotin in (treatment-resistant) preclinical models for melanoma and NSCLC.
Esther Breij, Ph.D., Director of Translational Research, Genmab, The Netherlands

16:15 Development of Highly Potent Pyrrolobenzodiazepine Based ADCs from Bench to Clinic: Challenges and Lessons Learned
Pyrrolobenzodiazepine (PBD) dimers represent a promising new class of toxins for the development of antibody drug conjugates (ADCs). More than a dozen PBD-based ADCs are currently in various stages of clinical development for the treatment of various malignancies. This presentation will highlight some experiences when developing PBD-based ADCs from bench to clinic.
Patrick H. van Berkel, Senior Vice President, Research and Development, ADC Therapeutics, United Kingdom

16:45 ADC Technologies, Strategies to Improve Therapeutic Index and Efficacy
Today’s ADCs utilize different antigen targets, conjugation technologies, and payload warheads of various mechanisms such as tubulin inhibitors, DNA damaging, topoisomerase inhibition, or DNA polymerase II inhibitors. The main challenge remains to reach desirable efficacious doses due to the toxicity profile. Advanced methods to improve therapeutic index, including increasing ADC hydrophilicity, are presented.
Juhan Saarinen, Chief Executive Officer, Glykos Finland Oy

17:15 Close of Workshop B
Antibody affinity and developability optimization.

This validated target class, and (3) a Twist Antibody Optimization (TAO) platform for libraries, (2) a proprietary human anti-GPCR antibody phage display library focused on of Twist Bioscience, provides the biotechnology industry with an end-to-end antibody

mAbs, bispecifics, CAR-T molecules, and the increasingly allow for an information rich and efficient optimization of

combined with large datasets obtained from the same sample analyzed in parallel with repertoire sequencing. Overlaying these two datasets drastically expands the diversity of functionally annotated antibody sequences from a single campaign. We show how this combined approach can be applied to the discovery of antibodies against poorly immunogenic and highly homologous targets for therapeutic applications.

Jens Ruschmann, Ph.D., Senior Scientist and Project Lead, AbCellera, USA

Functional information about antibodies from single-cell screens can be combined with high conservation between rodents and humans is a

mAbs, bispecifics, CAR-T molecules, and the increasingly allow for an information rich and efficient optimization of

High Throughput SPR Demonstrates that V-lambda Expressing OmniChickens™ Exhibit Broad Epitope Coverage and Picomolar Affinity

The generation of antibodies to therapeutic targets with high conservation between rodents and humans is a challenge. Because of their increased evolutionary distance from humans compared to rodents, chickens are an ideal species to circumvent this challenge. Here we introduce a new line of OmniChickens™ which express VL1-44. The use of high throughput SPR allowed us to tease out more subtle relationships between antibodies in a given epitope bin. The analysis of large cohorts of antibodies in a single experiment against a model antigen in the different OmniChickens lines is an important metric in assessing the immune repertoire of our birds.

Kathryn Ching, Ph.D., Senior Scientist, Ligand Pharmaceuticals, USA

When the Power of Nature and Technology Meet: Overcoming Tolerance by Combining Repertoire Sequencing with Single-Cell Screening

Functional information about antibodies from single-cell screens can be combined with large datasets obtained from the same sample analyzed in parallel with repertoire sequencing. Overlaying these two datasets drastically expands the diversity of functionally annotated antibody sequences from a single campaign. We show how this combined approach can be applied to the discovery of antibodies against poorly immunogenic and highly homologous targets for therapeutic applications.

Jens Ruschmann, Ph.D., Senior Scientist and Project Lead, AbCellera, USA

Functional information about antibodies from single-cell screens can be combined with large datasets obtained from the same sample analyzed in parallel with repertoire sequencing. Overlaying these two datasets drastically expands the diversity of functionally annotated antibody sequences from a single campaign. We show how this combined approach can be applied to the discovery of antibodies against poorly immunogenic and highly homologous targets for therapeutic applications.

Jens Ruschmann, Ph.D., Senior Scientist and Project Lead, AbCellera, USA

Functional information about antibodies from single-cell screens can be combined with large datasets obtained from the same sample analyzed in parallel with repertoire sequencing. Overlaying these two datasets drastically expands the diversity of functionally annotated antibody sequences from a single campaign. We show how this combined approach can be applied to the discovery of antibodies against poorly immunogenic and highly homologous targets for therapeutic applications.

Jens Ruschmann, Ph.D., Senior Scientist and Project Lead, AbCellera, USA

Functional information about antibodies from single-cell screens can be combined with large datasets obtained from the same sample analyzed in parallel with repertoire sequencing. Overlaying these two datasets drastically expands the diversity of functionally annotated antibody sequences from a single campaign. We show how this combined approach can be applied to the discovery of antibodies against poorly immunogenic and highly homologous targets for therapeutic applications.

Jens Ruschmann, Ph.D., Senior Scientist and Project Lead, AbCellera, USA

Functional information about antibodies from single-cell screens can be combined with large datasets obtained from the same sample analyzed in parallel with repertoire sequencing. Overlaying these two datasets drastically expands the diversity of functionally annotated antibody sequences from a single campaign. We show how this combined approach can be applied to the discovery of antibodies against poorly immunogenic and highly homologous targets for therapeutic applications.

Jens Ruschmann, Ph.D., Senior Scientist and Project Lead, AbCellera, USA

Functional information about antibodies from single-cell screens can be combined with large datasets obtained from the same sample analyzed in parallel with repertoire sequencing. Overlaying these two datasets drastically expands the diversity of functionally annotated antibody sequences from a single campaign. We show how this combined approach can be applied to the discovery of antibodies against poorly immunogenic and highly homologous targets for therapeutic applications.

Jens Ruschmann, Ph.D., Senior Scientist and Project Lead, AbCellera, USA
Track 1: New Antibody Formats and Effector Functions

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Co-Chairs' Remarks</td>
</tr>
<tr>
<td>14:35</td>
<td>Engineered Fc Domains with Exquisite Selectivity for a Single FcγR</td>
</tr>
<tr>
<td>15:05</td>
<td>Design of Antibodies for Better Performance</td>
</tr>
<tr>
<td>15:35</td>
<td>Networking Refreshment Break and Exhibit/Poster Viewing</td>
</tr>
<tr>
<td>16:15</td>
<td>IgA Is a Novel Isotype to Treat Lymphoma and Neuroblastoma, and Is Enhanced by CD47/SIRPa</td>
</tr>
<tr>
<td>16:45</td>
<td>Boosting Immune Effector Function Using Novel Immunocytokines and Targeted 4-1BB Agonists</td>
</tr>
<tr>
<td>17:15</td>
<td>Darpin-based Agents and Intra-tumoral Delivery</td>
</tr>
<tr>
<td>17:45</td>
<td>Networking Cocktail Reception and Exhibit/Poster Viewing</td>
</tr>
</tbody>
</table>

Track 2: Recent Advances in Immuno-Oncoology Approaches

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Co-Chairs' Remarks</td>
</tr>
<tr>
<td>14:05</td>
<td>Small Molecule Targeting of the CD47 Myeloid Checkpoint</td>
</tr>
<tr>
<td>15:05</td>
<td>Bispecific y8-T cell Engagers for Cancer Immunotherapy</td>
</tr>
<tr>
<td>15:35</td>
<td>Networking Refreshment Break and Exhibit/Poster Viewing</td>
</tr>
<tr>
<td>16:15</td>
<td>CAR-engineering Approaches Using Gamma Delta T Lymphocytes</td>
</tr>
<tr>
<td>16:45</td>
<td>TEGs - qβT cells Engineered to Express a Defined y8TCR – The Next Generation of CAR T</td>
</tr>
<tr>
<td>17:15</td>
<td>iNKT Cell Immunotherapy in Allogeneic Stem Cell Transplantation and Blood Cancers</td>
</tr>
</tbody>
</table>

Wednesday, 12 June, 2019 • Main Conference
Turning Antibody Leads into Drugs

Chairman's Remarks
John McCafferty, Ph.D., Founder and CEO, IONTAS, United Kingdom

Transitioning from Lead Discovery through Pre-clinical/in vivo PoC
Andy Nixon, Ph.D., Vice President, Biotherapeutics Molecule Discovery, Boehringer Ingelheim, USA

The Use of Bispecific Antibodies to Modulate Anti-Tumour Immune Responses
Bispecific antibodies are an attractive alternative to cancer treatments combinations. This presentation will discuss F-star's approach to create bispecific mAb². In vitro and in vivo efficacy of F-star bispecific antibodies targeting oncology pathways will be presented.
Francisca Wollerton, Ph.D., Director of Antibody Engineering, F-star Biotechnology, United Kingdom

Human Antibodies for Novel Targets and Underserved Diseases
Hans de Haard, Ph.D., Chief Scientific Officer, Argenx, Belgium

Addressing Antibody Developability by Mammalian Display
As well as having appropriate binding affinity it is important that clinical drug candidates are non-polyreactive and have optimal biophysical properties allowing formulation at high concentrations. Our mammalian display platform has allowed direct selection from libraries of antibody variants with reduced polyreactivity and aggregation propensity. Addressing developability issues during lead discovery significantly de-risks the future development of antibody drugs.
John McCafferty, Ph.D., Founder and CEO, IONTAS, United Kingdom

True Specificity Is a Critical Development Characteristic in Therapeutic Antibody Development
UltraHuman Eight has shown for the first time that antibody polyspecificity can be the direct cause of unpredictable side effects in the clinic. Novel insights into identification of off-target binding events and their remediation to create ideal clinical leads with minimised risk will be presented.
Jonny Finlay, CEO, UltraHuman, United Kingdom

Following the Translational Biology in Human Osteoarthritis from Anti-NGF to P75-Fc
Osteoarthritis remains a considerable burden on society, lacking effective treatment options, so the profound analgesia seen with anti-NGFs was rightly seen as a huge step forward. Unfortunately, side effects have emerged, most noticeably an acceleration of underlying disease. We now understand why this happens and have developed an alternative mechanism based on an endogenous neurotrophin receptor, P75. This molecule is showing dramatic effects in phase 1 testing in OA patients.
Kevin Johnson, Ph.D., Co-Founder and Partner, Medicxi, United Kingdom

Antibody Therapeutics for Autoimmune and Neurodegenerative Diseases

Chairwoman's Remarks
Marie Kosco-Vilbois, Ph.D., Chief Scientific Officer, AC Immune SA, Switzerland

Combination Depleting mAbs for Th1 and Th17 Cells and Tolerance Induction for Autoimmune 'Cure'
We have developed excellent mAbs to CCR6 (a Th17/Tfh marker) and CXCR3 (a Th1 marker). We have engineered these mAbs to be depleting and are able to achieve total depletion in mouse models. This results in effective inhibition in disease models, such as rheumatoid arthritis, psoriasis, fatty liver and others. To achieve even better efficacy, we have combined these treatments with metabolite diets (see Marino et al Nature Immunology 2017) which are powerful immunosuppressive, and Treg inducing. We are working on an ambitious strategy to ‘reset’ then restore tolerance to auto antigens such that patients can live drug free.
Charles MacKay, Ph.D., Professor, Monash University, Australia

Targeting Cell to Cell Spreading of Alpha-synuclein as a Therapeutic Intervention Strategy for Parkinson's Disease (and Other Synucleinopathies)
Parkinson's disease (PD) is a progressive neurodegenerative disease, caused by intracellular aggregation of the protein alpha synuclein. Recent evidence from in vitro and in vivo models suggests that cell-to-cell spreading of alpha-synuclein is the molecular basis of PD, implying an extracellular state of these aggregates. At AC Immune, we are targeting this mechanism with antibodies, raised through our proprietary platform, to prevent the pathological spread of alpha-synuclein aggregates in PD patients.
Jan Stöhr, Ph.D., Head of Non-AD Proteinopathies, AC Immune SA, Switzerland

Exosomes are small nanometer-sized vesicles that all cells continuously secrete and that represent the body's natural mechanism for delivering proteins and nucleic acids safely and effectively from cell to cell. Evox is engineering exosomes to contain a variety of drugs and enabling their delivery to tissues and cells that have previously been inaccessible. Therapeutic applications of this novel drug delivery approach will be presented, with special attention paid to improved efficacy and delivery of biologics, such as antibodies.
Antonin de Fougerolles, Ph.D., CEO, Evox Therapeutics Limited, United Kingdom

True Specificity Is a Critical Development Characteristic in Therapeutic Antibody Development
UltraHuman Eight has shown for the first time that antibody polyspecificity can be the direct cause of unpredictable side effects in the clinic. Novel insights into identification of off-target binding events and their remediation to create ideal clinical leads with minimised risk will be presented.
Jonny Finlay, CEO, UltraHuman, United Kingdom

Following the Translational Biology in Human Osteoarthritis from Anti-NGF to P75-Fc
Osteoarthritis remains a considerable burden on society, lacking effective treatment options, so the profound analgesia seen with anti-NGFs was rightly seen as a huge step forward. Unfortunately, side effects have emerged, most noticeably an acceleration of underlying disease. We now understand why this happens and have developed an alternative mechanism based on an endogenous neurotrophin receptor, P75. This molecule is showing dramatic effects in phase 1 testing in OA patients.
Kevin Johnson, Ph.D., Co-Founder and Partner, Medicxi, United Kingdom

Antibody Therapeutics for Autoimmune and Neurodegenerative Diseases

Chairwoman's Remarks
Marie Kosco-Vilbois, Ph.D., Chief Scientific Officer, AC Immune SA, Switzerland

Combination Depleting mAbs for Th1 and Th17 Cells and Tolerance Induction for Autoimmune 'Cure'
We have developed excellent mAbs to CCR6 (a Th17/Tfh marker) and CXCR3 (a Th1 marker). We have engineered these mAbs to be depleting and are able to achieve total depletion in mouse models. This results in effective inhibition in disease models, such as rheumatoid arthritis, psoriasis, fatty liver and others. To achieve even better efficacy, we have combined these treatments with metabolite diets (see Marino et al Nature Immunology 2017) which are powerful immunosuppressive, and Treg inducing. We are working on an ambitious strategy to ‘reset’ then restore tolerance to auto antigens such that patients can live drug free.
Charles MacKay, Ph.D., Professor, Monash University, Australia

Targeting Cell to Cell Spreading of Alpha-synuclein as a Therapeutic Intervention Strategy for Parkinson's Disease (and Other Synucleinopathies)
Parkinson's disease (PD) is a progressive neurodegenerative disease, caused by intracellular aggregation of the protein alpha synuclein. Recent evidence from in vitro and in vivo models suggests that cell-to-cell spreading of alpha-synuclein is the molecular basis of PD, implying an extracellular state of these aggregates. At AC Immune, we are targeting this mechanism with antibodies, raised through our proprietary platform, to prevent the pathological spread of alpha-synuclein aggregates in PD patients.
Jan Stöhr, Ph.D., Head of Non-AD Proteinopathies, AC Immune SA, Switzerland

Exosomes are small nanometer-sized vesicles that all cells continuously secrete and that represent the body's natural mechanism for delivering proteins and nucleic acids safely and effectively from cell to cell. Evox is engineering exosomes to contain a variety of drugs and enabling their delivery to tissues and cells that have previously been inaccessible. Therapeutic applications of this novel drug delivery approach will be presented, with special attention paid to improved efficacy and delivery of biologics, such as antibodies.
Antonin de Fougerolles, Ph.D., CEO, Evox Therapeutics Limited, United Kingdom

True Specificity Is a Critical Development Characteristic in Therapeutic Antibody Development
UltraHuman Eight has shown for the first time that antibody polyspecificity can be the direct cause of unpredictable side effects in the clinic. Novel insights into identification of off-target binding events and their remediation to create ideal clinical leads with minimised risk will be presented.
Jonny Finlay, CEO, UltraHuman, United Kingdom

Following the Translational Biology in Human Osteoarthritis from Anti-NGF to P75-Fc
Osteoarthritis remains a considerable burden on society, lacking effective treatment options, so the profound analgesia seen with anti-NGFs was rightly seen as a huge step forward. Unfortunately, side effects have emerged, most noticeably an acceleration of underlying disease. We now understand why this happens and have developed an alternative mechanism based on an endogenous neurotrophin receptor, P75. This molecule is showing dramatic effects in phase 1 testing in OA patients.
Kevin Johnson, Ph.D., Co-Founder and Partner, Medicxi, United Kingdom
Era for Therapeutic Antibody Development

Antibody Format Opens a New Versatile Bispecific development time by 6 -18 months. Proprietary bispecific antibody format that can reduce the development time by 6 -18 months.

An Innovative and

14:55 Thermo Fisher Scientific

14:55 The Three Step Streamlined mAb Process
New modalities of mAbs and cost and time constraints lead to the requirement of a robust, quickly and simply adaptable platform to any mAbs. The three step streamlined mAb process allows saving dilatation between steps thanks to the flexibility of use of CMM HyperCel sorbent while maintaining a high capacity. The process is described in batch and easily converted to continuous mode.

Catherine Allioux, Global Product Manager, Pall Biotech, France

Antibody Discovery with Reference to a number of Challenging Targets

Having efficient technologies to discover high quality monoclonal antibodies has never been more important. Many of the well characterised and more straight forward targets have been addressed and antibody therapeutics have been developed successfully. We are now in an era where the nature of targets has become more challenging and the success criteria for an antibody-based therapeutic is more extensive. In order to overcome these challenges and develop novel antibody-based drugs to these “high-hanging fruit”, we employ a novel platform that enables deep and broad sampling of the B cell repertoire to discover potentially rare antibodies with desirable characteristics. We will describe how we utilise state of the art automation and droplet microfluidics to facilitate antibody discovery with reference to a number of challenging targets.

John Silva, Ph.D., Senior Principal Scientist, Antibody Discovery, UCB, United Kingdom
From Random Combinatorial Libraries to Collections of Therapeutic Leads – The Evolution of Fully Synthetic Antibody Libraries

Combinatorial synthetic antibody libraries came a long way from just presenting small random subsets of the immune repertoire to large collections of antibodies with good developability characteristics and broad epitope coverage. The evolution of these libraries and data of projects against difficult targets using our latest library Ylanthia will be presented.

Markus Enzelberger, Ph.D., Chief Scientific Officer, MorphoSys AG, Germany

Identifying Haemophiliacs with Anti-Factor VIII Antibodies: A Case Study in Repertoire Sequencing Analytics

The standard treatment for haemophilia A is infusion with replacement Factor VIII, but around 20% of patients develop anti-FVIII antibodies, known as inhibitors. This talk will discuss whether antibody repertoire sequencing (Rep-Seq) can help us predict which haemophiliacs will develop inhibitors. This research will be placed in a broader context: What are the available tools for analyzing Rep-Seq data? And what are the key benefits, challenges and limitations of Rep-Seq?

Adrian Shepherd, Ph.D., Reader in Computational Biology, Birkbeck College, University of London, United Kingdom

30 Years of IMGT: Antibodies from Receptors to Amino Acids, What Have We Learned?

The creation of IMGT in 1989 marked the birth of immunoinformatics by the official recognition of immunoglobulins (Ig) or antibodies and T cell receptors (TR) as ‘genes’. A second major breakthrough was the IMGT Collier de Perles for V and C domains, opening new insights on antibody humanization and engineering.

Marie-Paule Lefranc, Ph.D., IMGT® Founder and Director, University of Montpellier, CNRS, France

Extracting Trends from Historical Antibody Developability Data Using Machine Learning

Antibodies and Biomarkers are amongst the most potent treatment regimens for a wide range of diseases, including cancers and autoimmune disorders. An important step in assessing liabilities in manufacture involves performing developability assessments (DAS). Novartis has an extensive suite of assays to screen antibodies and biomarkers for manufacturing liabilities. With extensive efforts to systematically capture and organize these datasets, the time is appropriate to explore the applicability of building machine-learning-based tools to predict the outcome of some important assays on new candidates. This talk will give an overview of Novartis’ strategy in building a toolkit involving computational and experimental assays for next-generation developability assessments of antibodies.

Abhinandan Raghavan, Ph.D., Technology Lead (Computational Biology), NIBR Biologics Center, Novartis Pharma AG, Switzerland

Close of Conference

Track 2: Clinical Developments in Antibody Therapeutics

From Developing Emapalumab to Developing Next Generation Antibody Formats

We used phage display coupled to upfront functional screening to discover a panel of scFv neutralizing Interferon γ. One of these scFv became the starting point for the development and approval of Emapalumab, the first therapy for the treatment of primary HLH in children. This success prompted us to develop proprietary technologies to generate mAbs for inflammatory conditions but also multispecific antibody-based formats for immuno-oncology.

Nicolas Fischer, Ph.D., Head of Research and Special Projects, Novimmune SA, Switzerland

Contact Refreshment Break and Exhibit/Poster Viewing

Anti-CGRP Antibodies for Migraine Prevention

Calcitonin gene-related peptide (CGRP) plays a crucial role in the pathophysiology of migraine. By interfering specifically in its pathway migraine attacks can be triggered and attenuated. Monoclonal antibodies against CGRP or its receptor have been developed and proven effective for the preventive treatment of migraine. Several of these antibodies have been approved for their clinical use by regulatory authorities. The presentation will give an overview on the available antibodies regarding the rationale for their development, their mechanism of action and their clinical efficacy.

Jan Hoffmann, M.D., Ph.D., Senior Clinical Lecturer in Neurology, King’s College London, United Kingdom

A First in Class IgE Antibody for Cancer Therapy: From Concept to Translation

We have designed tumour antigen-specific antibodies with IgE Fc regions to harness known effector functions of this class of mediated immune clearance of parasites. Anti-tumour IgE mediated tumour-restricting properties in pre-clinical models and promoted monocyte/macrophage recruitment against tumours. A first-in-class anti-cancer IgE has reached clinical testing, offering opportunities to extend the current IgG-only class of monoclonal antibodies in oncology.

Sophia N. Karagiannis, Ph.D., Reader in Translational Cancer Immunology, Head of Cancer Antibody Discovery and Immunotherapy, King’s College London, United Kingdom

Clinical Development of Caplacizumab: An Anti-von Willebrand Factor Nanobody for the Treatment of Acquired Thrombocytopenic Purpura

Caplacizumab (trade name Cablivi®) is an anti-von Willebrand factor (vWF) Nanobody® produced in Escherichia coli, developed for the treatment of acquired thrombotic thrombocytopenic purpura (aTTP). aTTP is a rare, life-threatening, immune-mediated, thrombocytopenic disorder caused by a defect in the processing of vWF, a key protein in hemostasis. Despite the current standard-of-care treatment, consisting of daily plasma exchange (PEX) and immunosuppression, episodes of aTTP are still associated with a mortality rate of up to 20%, with most deaths occurring within 30 days of diagnosis. Caplacizumab blocks the interaction between vWF and platelets and therefore has an immediate effect on platelet adhesion and the ensuing formation and accumulation of the micro-clots that cause the severe thrombocytopenia, tissue ischemia and organ dysfunction in aTTP. Nanobodies are a novel class of proprietary therapeutic proteins based on single-domain antibody fragments that contain the unique structural and functional properties of naturally-occurring heavy chain only antibodies. Caplacizumab received Orphan Drug designation in the EU, USA, Japan, Switzerland and Australia. Cablivi received marketing authorization in the EU and in the US, based on the Phase II TITAN and Phase III HERCULES studies in 220 adult patients with aTTP in the HERCULES study, treatment with caplacizumab in addition to standard-of-care resulted in a significantly shorter time to platelet count response (p<0.01), the study’s primary endpoint; a significant reduction in aTTP-related death, recurrence of aTTP, or at least one major thromboembolic event during study drug treatment (p<0.001); and a significantly lower number of aTTP recurrences in the overall study period (p<0.001). Importantly, treatment with caplacizumab resulted in a clinically meaningful reduction in the use of PEX and length of stay in the intensive care unit (ICU) and the hospital, compared to the placebo group. In clinical trials, caplacizumab demonstrated a safety profile, consistent with its mechanism of action, with epistaxis, headache and gingival bleeding as the most frequently reported adverse reactions. Caplacizumab represents an important addition to the treatment armamentarium for aTTP as it is the first therapy providing protection from the microthrombosis that is responsible for the morbidity and mortality in this disease.

Bernard Delaey, Ph.D., Regulatory Therapeutic Area Lead, Ablynx, Belgium

Close of Conference
SPONSORSHIP/EXHIBITION OPPORTUNITIES

Become a sponsor or exhibitor and connect face-to-face with 250+ highly influential scientists, engineers and executives from industry and academia with the budget and authority to recommend, specify and approve the purchase of products and services to accelerate antibody research, discovery efforts and clinical programs.

Showcase your products and services directly to this audience of antibody researchers and senior decision makers through:

- Exhibit Booth Packages
- Scientific Briefings
- Custom Emails
- Branding touches – lanyards, conference totes, pad, pens, etc.

A wide variety of options are available to help you meet your company objectives before, during and after the conference.

EXHIBITORS AND SPONSORS (as of May 16, 2019)

SCIENTIFIC BRIEFING SPONSORS

EXHIBITORS

CONNECT WITH 250+ BUYERS – RESERVE YOUR EXHIBIT BOOTH OR SPONSORSHIP TODAY!

For more information regarding sponsorship opportunities contact:
Kristin Skahan | Kristin.Skahan@KNect365.com | +1.857.504.6730

ALSO CONSIDER ATTENDING

Antibody Engineering & Therapeutics

December 9-13, 2019
Marriott Marquis San Diego, San Diego, CA
www.antibodyeng.com

Antibody Engineering & Therapeutics Asia

February 24-26, 2020
Kyoto, Japan
AntibodyEngAsia.com

AntibodyEngEU.com
Ways to Register

EASIEST:

www.AntibodyEngEU.com

CALL
+44 (0) 20 3377 3903

EMAIL
LS.Registrations@Knect365.com

<table>
<thead>
<tr>
<th>Industry Rates</th>
<th>Register by 24 May 2019</th>
<th>Standard Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Conference only</td>
<td>£1699+ VAT = £2055.79</td>
<td>£1799+ VAT = £2176.79</td>
</tr>
<tr>
<td>Main Conference + 1 Workshop</td>
<td>£2099+ VAT = £2539.79</td>
<td>£2199+ VAT = £2660.79</td>
</tr>
<tr>
<td>Main Conference + 2 Workshops</td>
<td>£2299+ VAT = £2781.79</td>
<td>£2399 + VAT = £2902.79</td>
</tr>
</tbody>
</table>

AcaDeMiC/GovErnment Rates*

Register by 24 May 2019

<table>
<thead>
<tr>
<th>Industry Rates</th>
<th>Register by 24 May 2019</th>
<th>Standard Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Conference only</td>
<td>£649+ VAT = £785.29</td>
<td>£699 + VAT = £845.79</td>
</tr>
<tr>
<td>Main Conference + 1 Workshop</td>
<td>£849 + VAT = £1027.29</td>
<td>£899 + VAT = £1087.79</td>
</tr>
<tr>
<td>Main Conference + 2 Workshops</td>
<td>£949 + VAT = £1148.29</td>
<td>£999 + VAT = £1208.79</td>
</tr>
</tbody>
</table>

Add-On Options

| Poster Presentations | Industry Poster: £125 + VAT = £151.25 | Academic Poster: FREE |

*Academic/Government rates are only extended to full-time employees of government, universities and university-affiliated hospitals with no industry affiliation.

Group Rates – Register Your Whole Team!

For special group rates to attend, please contact Jessica Purnell at Jessica.Purnell@Knect365.com or +44 (20) 7551 952.

Present a Poster to Showcase Your Company’s Latest Research

Highlight your organization’s exciting research by presenting a scientific poster, which will be displayed in the exhibit & poster hall during the event. You must be a registered attendee to present a poster. The deadline to submit your poster is: May 17, 2019. Poster fees: £125 for Industry and free for Academic.

Postillion Hotel Amsterdam

Paul van Vlissingenstraat 8
1096 BK
Amsterdam, The Netherlands
Phone: +31 (0) 20 820 44 10

Reduced Rate Accommodation

Please click the link below and type in the company code Knect1 to book your accommodation for the conference:

Special reduced hotel rates are valid until sold-out. See website for details.